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ABSTRACT

Yi, Li Ph.D., Purdue University, December 2014. Study Quark Gluon Plasma by
Particle Correlations in Heavy Ion Collisions. Major Professor: Fuqiang Wang.

A strongly interacting Quark Gluon Plasma (QGP) is created in relativistic heavy

ion collisions at the Relativistic Heavy Ion Collider (RHIC). Two-particle (dihadron)

angular correlations have been used to study the properties of the QGP. The two

major contributions to the dihadron correlations are jet correlations and correlations

due to anisotropic collective flow of the QGP. While jet correlations probe jet-medium

interactions in the QGP medium, anisotropic flow provides information about the

thermodynamic properties of the QGP. The third harmonic flow (v3) is sensitive to

the ratio of the shear viscosity to entropy density of the QGP medium and the initial

energy density fluctuations. This thesis provides the first v3 measurement in Au+Au

collisions at
√
s
NN

= 200 GeV from the STAR experiment. The ∆η-gap, multiplicity

and pT dependence of the v3 are reported along with comparisons with hydrodynamic

predictions.

In heavy ion collisions, the two-particle cumulant flow measurement is contami-

nated by nonflow correlations, such as jet correlations. An accurate flow measurement

is crucial for the determination of the QGP shear viscosity to entropy density ratio.

This thesis provides a data-driven isolation of ∆η-dependent and ∆η-independent

components in the two-particle cumulant measurement. The ∆η-dependent term is

associated with nonflow, while the ∆η-independent term is associated with flow and

flow fluctuations. It is found that in 20-30% centrality Au+Au collisions, the flow

fluctuation is 34% relative to flow, and the nonflow relative to flow square is 5% with

∆η-gap > 0.7 for 0.15 < pT < 2 GeV/c at |η| < 1.



xvi

The recent observations of a long-range ∆η correlation (the ridge) in p + p and

p+Pb collisions at the Large Hadron Collider (LHC) raised the question of collective

flow in these small systems, which had been considered control experiments for heavy-

ion collision studies. This thesis provides a careful analysis of short- and long-range

two-particle correlations in d+Au collisions at 200 GeV from the STAR experiment.

The event activity selection affects the jetlike correlated yield in the d+Au colli-

sions. Therefore, a simple difference between high- and low-activity collisions cannot

be readily interpreted as nonjet, anisotropic flow correlations. This thesis reports

the near-side ridge yield as a function of multiplicity and ∆η, and its ratio to the

away-side jet dominated correlated yield, as well as the ratio to the underlying event

multiplicity. This thesis also analyzes the dihadron azimuthal correlations in terms of

Fourier coefficients Vn. The V2 is found to be independent of event multiplicity and

similar between Au-going and d-going forward/backward rapidities. These dihadron

correlation measurements in d+Au collisions should provide insights into the theo-

retical understanding of the physics mechanism for the near-side ridge in the d+Au

system and the possible collective flow and QGP formation in these systems.
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1. Introduction

The fundamental constituents of nuclear matter are quarks and gluons, together called

partons. Gluons mediate the strong force between quarks. Since the strong force

between quarks increases with the distance of separation, quarks and gluons are con-

fined within hadrons as color neutral objects [1–3]. Free quarks or gluons have never

been observed. However, Quantum Chromodynamics (QCD) [4–7], the fundamental

theory governing the strong interaction, predicts that quarks and gluons can exist

in deconfined state, called the Quark Gluon Plasma (QGP) [8–11]. The QGP is a

plasma in which quarks and gluons can move in an extended volume without being

restricted to the hadron size. Relativistic heavy ion collisions are used to create and

study such a QGP state in the laboratory.

1.1 Quark Gluon Plasma

The attractive force between a quark-antiquark pair is roughly constant at large

distances. The gluon binding potential between quark and antiquark is therefore

proportional to their distance. The linear potential confines the quarks within the

hadron size at zero temperature, since more energy is needed when the distance

increases [12, 13]. As a long distance feature of QCD, the confinement prevents the

isolation of a single quark. When one tries to isolate a single quark from a hadron,

for example, the gluon field between the quark and the rest of the hadron becomes

energetic enough that a quark-antiquark pair is created that separates the gluon field

into two regions. A new hadron is created in this process which confines the quark

preventing the creation of an isolated, free quark.

Deconfinement can occur at high nuclear densities. When the nuclear matter den-

sity is high enough, the hadrons are compressed into one another. The quarks cannot
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identify their original partners in the hadron anymore, as they find a considerably

large number of neighboring quarks in their former hadron radius (see Fig. 1.1). The

attractive potential between quarks is a function of their distance. At high nuclear

matter densities, when the distance between quarks and their new neighbors is short

enough, the attractive potential becomes small. The quarks can therefore move over

the extended volume. This change in quark motion can also occur at high tempera-

tures. At high temperature many extra particle-antiparticle pairs can be produced,

which effectively makes the boundaries between hadrons disappear.

Another way to look at the transition from confinement to deconfinement is

through its similarity to the Debye screening effect in electric plasmas. In dense

plasma, each ion is surrounded by other ions and electrons. The effective Coulomb

potential between the ion and an electron some distance away is screened by the

surrounding ion and electron cloud with vanishing net charge. The effective poten-

tial decreases as the charge density increases. In this case, the bound state of ion

and electron becomes dissolved. The color screening in QGP is similar to the Debye

screening in the electric plasma by substituting the electric charge with QCD color

charge. The difference between them is the interaction properties of the force carrier.

While photons in electromagnetism do not interact between themselves, gluons inter-

act with each other in QCD. The consequence of this self-interaction property of the

gluons is that the QCD binding energy is ∝ r, while the Coulomb potential is ∝ 1
r
at

large distances.

1.2 Heavy Ion Collisions

Ultra-relativistic heavy ion collisions were proposed as a means to create the QGP

[15]. The QGP exists at high temperatures (> 170 MeV ≈ 2×1012 Kelvin [16,17]) or

large baryon number densities (a few times the nuclear matter density). (Quarks and

antiquarks have baryon numbers of 1
3
and −1

3
, respectively. The baryon number of a

system is the sum of the baryon numbers of all its constituents.) As a result, there
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Figure 1.1. With increasing nuclear matter density, matter changes from
nuclear to quark matter. Figure motivated by [14].

are generally two ways to achieve the high energy density for the QGP to form. One

is to increase the temperature for particle-antiparticle production without increasing

the net baryon number. The other is to compress the system of many nucleons with

an increase of the baryon number density.

Since normal nuclear matter is at a comparatively low temperature (for compari-

son, the center of the Sun is at 11× 106Kelvin ≈ 10−3 MeV) and low baryon number

density (∼ 0.17 per cubic fermi = 0.17× 10−45m−3), the QGP is not present in nor-

mal environments. Ultra-relativistic heavy ion collisions create the QGP primarily

through the increase of temperature. In ultra-relativistic heavy ion collisions, two

nuclei are accelerated close to the speed of light (99.995% c) and are thus Lorentz

contracted. When they collide with each other, the nuclei slow down through, naively

speaking, multiple inelastic nucleon-nucleon collisions, depositing energy into the

collision zone. If the energy density reaches the critical value (∼ 1 GeV/fm3 pre-

dicted from QCD [15]) of the phase transition, the QGP is predicted to form. After

a collision, high energy nucleons (the baryonic matter) still have substantial for-

ward/backward momentum and thus end up substantially far away from the collision

zone. Therefore, the net baryon number in the collision zone is small, while the mat-

ter created is at an extremely high temperature. The collision process is illustrated
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as the curve in Fig. 1.2, starting from the hadronic matter (nuclei), rising in temper-

ature with low net baryon density into the QGP phase, and then returning to the

hadronic phase in the end. In contrast, proton-proton (p + p) collisions at similar

energies deposit less energy since there is only one nucleon-nucleon interaction.

Figure 1.2. A schematic view of the nuclear matter phase diagram in
QCD. Figure taken from [18].

In a relativistic heavy ion collision where the QGP is formed, the system evolves

through several space-time stages as depicted in Fig.1.3. The inelastic nucleon-

nucleon collision happens through parton-parton (quark or gluon) scattering. The

QGP is formed within ∼ 1fm/c after the collision. The system begins to thermal-

ize by further partonic scattering. As the scattering continues, the system expands

in both longitudinal and transverse directions. The temperature decreases as the

system expands. The photons and leptons radiated from the color QGP medium

leave the system without further (strong) interactions in the QGP. When the tem-

perature drops below the phase-transition critical value, the system starts to convert
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back into a hadronic state, in the form of baryons and mesons. The hadronization

happens at ∼ 10 fm/c. After hadronization, the system enters the hadron gas state.

In the hadron gas state, hadronic inelastic scatterings change the particle species at

the level of hadrons instead of partons. When further hadronic inelastic scattering

ceases, particle species is frozen. As the system further expands, the average distance

between particles increases. Particle elastic scatterings continue until their distance

is too large. Finally, the elastic scattering ceases and particles stream freely into the

detector and are recorded. The experimental observables are the charge, momentum

and energy of each final state particle reconstructed with the detectors. The final

state particles carry the information about the QGP as well as the various stages of

evolution.

Figure 1.3. Schematic view of the QGP space-time evolution. Tc is the
critical temperature for the QGP to turn into hadrons. Tch is the tem-
perature when hadrons stop inelastic collisions and their hadron species
become fixed. Tfo is the temperature when hadrons stop having elastic
collisions and free-stream to the detectors. Figure taken from [19].

The primary goal of the high energy heavy ion collision program is to create the

deconfined QGP and to investigate the QGP’s properties, such as the temperature

and order of the phase transition, the equation of state, and the transport properties.
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1.3 Collective Flow

During the QGP expansion, the partons are found to move collectively (flow phe-

nomenon), and hydrodynamics have been used to describe such collectivity behav-

ior [20]. There are several forms of flow: the longitudinal flow, the axially symmetric

radial flow, and the azimuthal anisotropic flow. The first harmonic anisotropic flow

is called the dipole/directed flow. The second harmonic anisotropic flow is called the

elliptic flow. The third anisotropic flow is called the triangular flow. The longitudinal

flow will not be discussed in this thesis, but some studies of it can be found in [21,22].

The radial flow and the anisotropic flow are in the transverse plane. Radial flow is

caused by the QGP expansion in the radial direction. The amount of radial flow is

generally governed by the particle interaction cross sections with others (or in hydro-

dynamic language, viscosity). For particles of similar cross sections, a common radial

flow velocity is customarily assumed. The heavier particles receive a larger boost

from the common radial flow velocity. The radial flow has been used to study kinetic

freeze-out information and the QGP equation of state [23, 24]. The directed flow (or

dipole flow) is the collective sidewards deflection of particles, as illustrated in Fig. 1.4.

It was first observed in Ca + Ca and Nb + Nb collisions at 400 MeV/nucleon in the

early 1980’s [25]. The directed flow probes the pre-equilibrium and the thermaliza-

tion stage as well as the initial-state fluctuation. The directed flow is small in the

mid-rapidity region in high energy heavy ion collisions. The directed flow measure-

ments can be found in [26–30]. This thesis focuses on the azimuthal anisotropic flow,

particularly the elliptic and triangular harmonic flows. In the following context, the

word ‘flow’ refers to anisotropy flow.

In a semicentral collision, the pressure gradient is not uniform in azimuthal angle.

Figure 1.5 shows the geometry of the overlap collision zone of two nuclei in the beam

view. In spatial coordinates, the collision zone is almond shaped. The standard

eccentricity of the overlap zone is defined by [32]

ǫ2 =
〈y2 − x2〉
〈y2 + x2〉 , (1.1)
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Figure 1.4. Distribution of nucleons on the reaction plane. The collision
axis is the z direction. The spectators are the particles which do not
interact. The nuclear matter distribution in the participant collision zone
has a sidewards deflection. Figure taken from [31].

where (x, y) is the spatial position of a participant nucleon. The angle brackets are

the average over all participant nucleons with unity weight. Other average definitions

can be found in reference [33–35]. The pressure gradient along the x axis is larger

than that along the y axis. Because the pressure gradient drives the direction of the

expansion, as the system evolves, the particles gain a larger momentum along the x

axis than the y axis. The spatial anisotropy is thus transferred into a momentum

anisotropy. The response of the final momentum anisotropy to the initial spatial

anisotropy depends on the interaction strength among the constituents, or the particle

mean free path relative to the size of the collision system. When the mean free path

is much larger than the size of the system, particles do not interact, and therefore

are unaware of the spatial geometry of the system. Hence, the particle momentum

directions would be uniform, and would be the same as they are initially produced.

When the mean free path is small relative to the system size, the information of

the system’s spatial distribution will be propagated to the particle momenta via
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interactions. The relative value of the mean free path to the system size is related

to the shear viscosity. The smaller mean free path, the smaller shear viscosity. The

comparison of the final anisotropy to the initial one, therefore, provides information

about shear viscosity of the system. In addition to the overall geometry, there are

event-by-event fluctuations in the geometry of the collision zone (e.g. hot spots).

There exist higher order harmonics in the energy density distribution. The different

order of coefficients respond differently to the system shear viscosity. Therefore, the

flow information can be used to constrain the QGP viscosity.

Figure 1.5. Distribution of nucleons in the transverse plane. The red
shaded area indicates smooth geometry overlap, while the dark circles
indicate interacting nucleons (thereby defining the collision zone). Figure
taken from [36].

The particle momentum angular distribution can be written as a Fourier series:

dN

dφ
=

N

2π
[1 + 2v1 cos(φ−Ψ1) + 2v2 cos 2(φ−Ψ2) + 2v3 cos 3(φ−Ψ3) + · · · ] (1.2)

=
N

2π
[1 +

∞
∑

n=1

2vn cosn(φ−Ψn)], (1.3)



9

where φ is the particle azimuthal angle. The v1 is the directed flow; the v2 is the

elliptic flow; the v3 is the triangular flow. They describe the magnitudes of particle

momentum anisotropy. Ψn are the corresponding harmonic azimuthal angles. Of

particular interest is the Ψ2, called the second harmonic plane or second order of

participant plane, which is determined by the initial participant nucleon (or parton)

configuration [37]. In Fig.1.5, the short x axis is the reaction plane, and the z axis is

the beam axis. Due to fluctuations, Ψ2 may not be the same as the reaction plane (the

plane determined by the beam direction and geometry centers of the two nucleons,

which is the x axis in Fig. 1.5). The v2 is the dominant term when the collision

geometry is almond shaped. The v3 is the third harmonic flow, which is zero due to

symmetry if the overlap region is smooth. Each vn would have their own harmonic

plane Ψn. The measurements of v2 and v3 are the main focus in this thesis.

Because the harmonic planes Ψn are not known a priori, v2 and v3 cannot be

calculated directly from the single particle distribution as in Eq. (1.2). However,

they can be obtained from two-particle correlations as follows. When single particle

distribution follows Eq. (1.2), the two-particle distribution is given by

dNpair

d∆η
=

Npair

2π
[1 +

∞
∑

n=1

2Vn{2} cosn∆φ] (1.4)

Vn{2} = van · vbn if there is only flow correlation (see discussion in Chapter 4). Here a,

b stand for the two sets of particles used in the correlation measure (where ∆φ is the

azimuthal opening angle between the two particles). When choosing a and b from the

same kinematic region, vn can be calculated by [38]:

vn{2} =

√

√

√

√

〈

∑M
i,j=1,i 6=j cosn(φi − φj)

M(M − 1)

〉

, (1.5)

where φi, φj are the azimuthal angles of particle pairs used for the correlation mea-

surement; M is number of particles used. First the average over M particles in each

event is taken, then the average over all events is taken (The weight used to average

over all event can be the number of pairs or unity, If the number of pairs, M(M − 1),

is used as the weight in the event average, then the calculation is equivalent to taking
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a single average over all pairs from all events). The v2 and v3 calculated from two

particle correlations are called the two-particle cumulant flow. In a similar manner,

one can also calculate vn from four-particle correlations (see Chapter 4).

1.4 Jet-medium Interactions

One way to probe the QGP is to measure how the jets are modified as they

interact with the QGP medium while traversing the medium. A parton in a projectile

nucleon interacts with a parton in a target nucleon. Occasionally large momentum

transfers occur. A large momentum-transfer scattering is called hard scattering. In

contrast, if the momentum transfer is small, the process is called a soft scattering.

In a hard scattering, the large longitudinal energy is transferred into the transverse

plane. The final partons thus gain large transverse momenta. Each final parton later

fragments into a shower of partons. In the QGP medium, these partons exchange

both momentum and color with the QGP. The color medium modifies the parton

shower if it propagates through the QGP. These partons eventually hadronize into a

cluster of hadrons, often called jets.

Jets as a probe for the QGP have two primary advantages. First, jets are produced

from partonic scatterings involving large momentum transfers. Jet production can

therefore be calculated by using perturbative QCD, while the soft process can not.

Second, jets are generated in hard scatterings on a very short time scale ∼ 1/QT ∼
0.1 fm/c or less [39] for momentum transfer QT = 2 GeV/c. The jets have enough

time to interact with the QGP, while they can also interact with the system before

the system is thermalized. By exploring how jets are modified, information can be

gained about the QGP medium.

On the other hand, the jet as a probe is also complicated. First, the partons in

a jet suffer from a complex time evolution, even in a vacuum without QGP. They

subsequently radiate gluons and can also split into quark and anti-quark pairs. As

a result, the nature of partons in a jet evolves as a function of time by branching
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into more partons. Second, the QGP medium has a collective motion. The measured

jet correlations have a flow background. Third, the QGP medium is not static. The

medium expands rapidly and its temperature decreases. The interaction of jets with

the dynamic medium is a challenging theoretical undertaking.

The first challenge above can be addressed by the following comparisons. Since

the final measurement is the output of jet-medium interactions, it is necessary to

understand the jet’s behavior in the absence of the medium as a baseline. p + p

collisions can be used as the vacuum baseline because QGP is generally not expected

to form in p+p collisions. Moreover, the parton distributions (except for low-x gluons)

in the nucleon, the partonic hard process cross sections and the fragmentation of

partons into hadrons are well understood [40]. Nonetheless, there is a defect in using

p+ p collisions as the baseline. The initial multiple soft scattering effect in heavy ion

collisions, usually called the Cronin effect [41], is not included in p+p collisions. One

way to include the Cronin effect in the baseline is to study proton-nucleus (pA) or

deuteron-nucleus (dA) collisions. In pA or dA collisions, the Cronin effect is present,

while the QGP is generally not expected to form in such a small system. (However,

there is a report of the possible formation of small droplets of QGP in p+Pb at the

LHC energy. The search for the QGP in d+Au collisions at RHIC will be discussed

in Chapter 5. )

The resolution to the second challenge can be considered from two perspectives.

From the experimental side, one can analyze the medium’s collective motion, namely

flow. By subtracting the flow, one will expect to obtain a clearer jet signal. From

the theoretical point of view, a dynamic description of the jet-medium interactions

should be incorporated. The third aforementioned challenge can also be addressed

by realistic theoretical investigations. By comparing experimental measurements of

jets and jet correlations to realistic and rigorous theoretical model studies, one hopes

to learn valuable information about the QGP.
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1.5 Two-particle ∆η-∆φ Correlation and the Ridge

This section describes two-particle ∆η-∆φ correlations and discusses the ridge

structure and the away-side shoulder in heavy ion collisions.

1.5.1 Why to Measure Two-particle ∆η-∆φ Correlation

Two-particle correlations have been used to study jets and jet-medium interac-

tions. Ideally fully reconstructed jets tell a more complete story on how a jet interacts

with the QGP medium than two-particle correlation studies. Figure 1.6 left panel

shows a reconstructed back-to-back jet event with one leading jet and one less ener-

getic, subleading jet at the Large Hadron Collider (LHC). However, it is practically

difficult to reconstruct a pure jet in heavy ion collisions, due to the large number of

final particles. The jet is known to be a spray of particles which are the end products

of one high energy parent parton. Instead of a parton spray, the experimental obser-

vation is the final hadrons reconstructed from the electrical signals. It is difficult to

reconstruct jets for several reasons. First, the detector has finite coverage and particle

detection capabilities. Not all particles can be recorded in the detectors. Second, the

large number of final produced particles (∼ thousands) in heavy ion collisions makes

it harder to distinguish which ones are from a jet, which are from the medium, and

which are from the interaction between the jet and the medium. Third, the different

jet reconstruction algorithms generally lead to different jet results, because different

jet algorithms may identify a jet with different particle constituents.

Because of these difficulties, high pT particles are often used as a substitute for jets

since they are usually the leading fragment of the jet. (At RHIC energy, a particle with

pT larger than 3 GeV/c is considered to be a high pT particle.) The ratio of the high

pT particle yield in heavy ion collisions relative to the yield in p+p or d+Au baselines

normalized by the number of binary collisions, called the nuclear modification factor,

is found to be less than unity [42,43]. The suppression of the single particle spectra at

high pT in heavy ion collisions indicates jet energy loss in the QGP. The suppression
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is often referred to as the jet-quenching phenomenon. However, the high pT single

particle spectra method has two kinds of bias by design. First, in order to have one

high pT daughter particle, the selected high pT parent parton tends to give most of

its energy to the daughter particle in hard fragmentation. Such a bias exists in heavy

ion collisions as well as in p+ p collisions [44]. Second, for jets in heavy ion collisions,

there is an additional bias: the surface bias. The surface bias is illustrated in the right

panel of Fig. 1.6. The jet interacts with the medium and loses energy. The amount

of energy loss depends on the path length the jet traverses through the medium.

When triggered on high pT , the jets with the shortest path length are more likely

to be selected because they lose less energy. These jets are mostly generated near

the surface of the medium. As a result, they provide minimal information about the

medium, since they have interacted little with the medium. This surface bias limits

the usefulness of these leading jets, but high pT particles can be used for the nuclear

modification study as mentioned previously. On the other hand, due to momentum

conservation, there is a recoil jet associated with the triggered high pT jet. While

the triggered high pT particle has less interaction, the particle in the recoil jet likely

has maximal interaction with the QGP medium because they have the longest path

length to traverse in the QGP. By studying the particles in the recoil jet, one can

gain more information about jet-medium interactions. Two-particle correlations are

used to study the recoil jet associated with the trigger jet. The combination of high

pT single particle spectra and two-particle correlations prove to be a powerful tool to

shed light on how jets lose energy in QGP.

1.5.2 Two-particle ∆η-∆φ Correlation Method

Two-particle ∆η-∆φ correlations measure the momentum angular distributions of

the associated particles relative to the trigger particle. A trigger particle is usually

defined as a particle with high pT , which is likely from a jet. An associated particle

is correlated with the trigger particle identified in a collision and it is usually a lower



14

Figure 1.6. Left panel: a reconstructed dijet event in Pb+Pb collisions
by CMS experiment [45]. The hard scattering producing the jets occurs
near the edge of the fireball. One of the jets (the trigger jet) leaves the
medium soon after its formation and thus escapes without much further
interaction with QGP, while the other one (the recoil jet) traverses the
medium and is strongly modified by the medium. Figure taken from [18].

pT particle which may be from the same jet or the recoil jet, the medium or the

jet-medium interaction. There are also cases when both the trigger and associated

particles are low pT particles. The low pT two particle correlation is sometimes referred

as the untriggered two-particle correlation, which is often used to study medium

properties. Two dimensions will be discussed: ∆φ = φassoc − φtrig is the azimuthal

opening angle between the trigger and associated particles; ∆η = ηassoc − ηtrig is

the pseudo-rapidity separation between the particles. The region ∆φ ≈ 0 is called

the near side, where the associated particle azimuthal angle is similar to the trigger

particle angle. The particles in the same jet as the trigger particle usually end up

in the near side. The region ∆φ ≈ π is called the away side. The particles from

the recoil jet are on the away side. The ∆η-∆φ two-particle (dihadron) correlation is

given by

C(∆η,∆φ) =
1

Ntrig

d2N

d∆ηd∆φ
=

1

Ntrig

S(∆η,∆φ)/ǫassoc
B(∆η,∆φ)/〈B(∆η|100%,∆φ)〉 . (1.6)
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Here S = d2Nsame

d∆ηd∆φ
is the raw dihadron correlation for pairs in the same event; and

B = d2Nmix

d∆ηd∆φ
is for trigger and associated particles from different events, which is called

mixed event correction. 〈B〉 is the B average over ∆φ at fixed ∆η|100%. ∆η|100% is

where the two-particle acceptance is 100%. The mixed event background serves as the

correction for the detector’s two-particle acceptance. For a 4π coverage with detection

efficiency ǫassoc = 100%, C(∆η,∆φ) = S(∆η,∆φ)
Ntrig

. While the mixed event background

does not contain the particle correlation existing in the same collision, it includes

the detector acceptance information. Taking STAR experiment’s Time Projection

Chamber (TPC) as an example, there are 12 sectors in φ. The sector boundaries are

the dead zones for particle detection. Particle tracks across the sector boundaries

have a lower probability to be reconstructed. Single particle deficiencies at sector

boundaries affect two-particle correlations, especially when both particles cross the

sector boundaries. Similarly, for the η direction and other detectors with non-uniform

detector efficiencies, the single particle efficiency affects the two-particle correlations.

Since the mixed event is also affected by the single particle detecting efficiency, the

raw dihadron correlation in the same event divided by the mixed event correlation

can correct for the non-uniform detector efficiency. Meanwhile, detector has limited

η acceptance. The STAR TPC has a good detection capacity in −1 < η < 1. The

single particle η acceptance gives a triangular shape for the dihadron correlations. The

mixed event background also corrects the triangular shape in ∆η. The mixed event

dihadron correlation normalization is 100% at |∆η|100% = 0 when both the triggered

and associated particles are in the TPC. The mixed events are required to have

primary vertices close to each other in the beam direction to resemble similar detector

acceptance, and to have similar event characteristics, such as a similar number of

particles. After dividing by the mixed event background, the dihadron correlation in

Eq. (1.6) is normalized by the total number of trigger particles used in the correlation

study. The per trigger particle normalized dihadron correlation describes, on average,

how many associated particles distributed in ∆η-∆φ space for each trigger particle.
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The underlying event contribution, which is a flow modulated background, is

subtracted from the per trigger dihadron correlations in Eq. (1.7) in order to obtain

the jet correlation. The dihadron correlation is the sum of jetlike and flow correlations:

C(∆η,∆φ) = Cbackground(∆η,∆φ) + J(∆η,∆φ); (1.7)

Cbackground(∆η,∆φ) = BZY AM(∆η)(1 + 2〈vtrigger2 vassocated2 〉 cos(2∆φ)). (1.8)

Here C(∆η,∆φ) is the measured dihadron correlation after the mixed event correc-

tion. Cbackground(∆η,∆φ) is the medium contribution to the dihadron correlation.

J(∆η,∆φ) is the dihadron correlation from the jetlike particles. The medium con-

tribution Cbackground(∆η,∆φ) is a uniform background with flow modulation in ∆φ

for each ∆η. Eq. (1.8) gives the expression which includes only elliptic flow modu-

lation where vtrigger2 and vassociated2 are the elliptic flow for the trigger and associated

particles, respectively. The elliptic flow vtrigger2 and vassociated2 can be measured using

several methods, such as the event-plane, the generating function, or the Q-cumulant

method [38]. The difference between flow measurements is usually treated as system-

atic uncertainties. Normalization BZY AM is the uniform background value at each

∆η, usually estimated by the Zero Yield At Minimum (ZYAM) method [46]. ZYAM

background BZY AM is estimated based on the assumption that the jet correlated yield

is zero at its minimum:

J(∆η,∆φ = ∆φmin) = 0. (1.9)

For various ∆η, the jet yield minima J(∆η,∆φ = ∆φmin) can have different values,

at different ∆φmin.

The high pT dihadron ∆η-∆φ correlation measurement shows a strongly sup-

pressed away-side jet peak with a minimally modified near-side jet peak in central

Au+Au collisions at
√
sNN =200 GeV, as reported in [47, 48]. The near-side peaks,

inspected in p + p , d+Au and in all centrality (Section 2.2.5) classes of Au+Au

collisions, characterize the hard scattering processes. Clear away-side peaks for the

high pT particles exist in p+p, d+Au and peripheral Au+Au collisions. In contrast,

the away-side peak for high pT particles in central Au+Au collisions is remarkably di-
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minished. The observation of the disappearance of high pT away-side peak in central

Au+Au collisions indicates that the recoil jet loses significant energy when traversing

the QGP.

1.5.3 Near-Side Ridge

The ridge was first discovered in central Au+Au collisions at
√
sNN = 200 GeV

at the RHIC by the STAR experiment [49]. The dihadron ∆η-∆φ correlation was

initially studied with high pT trigger particles. After the subtraction of the elliptic

flow background, the ridge was observed as a near-side peak at small |∆φ|, but at

large ∆η, where jet contribution is minimal. As the top panels in Fig. 1.7 show [50],

beside the near-side jet peak at small |∆η| < 1, there is a ridge on the near-side which

is uniform in ∆η at large |∆η| > 1 in the STAR TPC acceptance −2 < ∆η < 2 for

both 3 < ptriggerT < 4 GeV/c and 4 < ptriggerT < 6 GeV/c in Au+Au central collisions.

The ridge structure in the ∆η region of the near-side jet peak is unknown. The

naive expectation is that the ridge is also approximately uniform at |∆η| < 1. The

PHOBOS experiment measured the dihadron correlations in their detector coverage

−4 < ∆η < 2 with ptriggerT > 2.5 GeV/c and inclusive associated particle pT , and

found that the near-side ridge reaches up to at least |∆η| ≈ 4 in central Au+Au

collisions. The ridge yield is found to be largely independent of ∆η within their

detectors ∆η acceptance. The multiplicity dependence of the ridge shows that the

ridge yield decreases towards peripheral collisions, and that the yield is zero when the

collision has fewer than 100 participating nucleons for ptriggerT > 2.5 GeV/c [51]. In

contrast, there is no ridge in minimum bias d+Au collisions, as shown in the bottom

panels of Fig. 1.7. There is also no ridge observed in minimum bias p+ p collisions at
√
sNN = 200 GeV [49]. The near-side ridge discovered in central Au+Au collisions

has three major features: long rapidity range, relatively small azimuthal angle ∆φ,

and existence in events with a large number of particles.
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Figure 1.7. Dihadron (∆η,∆φ) correlations in d+Au (lower panels) and
Au+Au (higher panels)

√
sNN = 200 GeV per nucleon. Figure taken

from [50].

Further studies, which is discussed below, suggest the soft origin of ridge physics

(soft standing for small momentum transfer). The two major contributions in di-

hadron correlations are jet and flow correlations. Flow correlations are the soft physics

phenomenon. In contrast, jets are the hard process. While the first ridge measurement

was done with high pT trigger particles, further dihadron correlation measurements

with low pT particles showed that the ridge also exists for soft particles [52]. The

ridge with soft particles suggests that the jet may not be essential for the near-side

ridge. One should note, however, that soft near-side ridge measurements do not pre-

clude a jet origin, since jets also fragment into low pT particles. Several measurements

have been conducted to investigate whether the near-side ridge is originated from jet

physics or not by comparing the behaviors of jet and ridge. Jet correlations from hard

scattering have charge dependence. Dihadron correlations from jets are stronger for

pairs with opposite charges (unlike-sign) than pairs with the same charge (like-sign)
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due to charge conservation. The near-side ridge, however, is found to be the same

for both unlike-sign and like-sign pairs so ridge behaves differently from dihadron

correlations in jets [52]. On the other hand, there is a strong correlation between the

jet yield and the trigger particle pT . The higher ptriggerT particles come from more

energetic jets. However, the near-side ridge has a weaker dependence on the ptriggerT .

Additionally, the passociatedT spectra (particle yield distribution) of the near-side ridge

is softer than the spectra from jets, but similar to inclusive particle production which

is dominated by medium particles [53]. These measurements together suggest that

the near-side ridge may not be due to jets, but rather, due to medium particles.

Any possible explanation for the near-side ridge needs to address both its rela-

tionship with medium particles and its angular distribution features. The medium

collectivity effect in dihadron correlations is also more prominent in central collisions

because of the larger multiplicity. The near-side ridge is stronger in the central colli-

sions. Meanwhile, the ridge is similar to the medium effect as discussed above. These

facts suggest the possible connection between the ridge and collective anisotropic flow

(beyond elliptic flow, which has been subtracted out already). On the other hand, the

larger ∆η rapidity requires an early stage interaction for the near-side ridge. The long

range ∆η correlation implies that the two particles with large initial ∆η separation

still have a connection between them in the final state. According to causality, their

interaction has to happen at early times: at or instantaneously after the encounter

of the colliding nuclei [54]. Moreover, the ∆η shape is not only long range, but also

flat in ∆η. The flatness in ∆η suggests that these particle correlations are produced

independently in η. Flow also develops at early times [55]. Thus flow is a viable

explanation for the ridge.

Another explanation for the near-side ridge in heavy ion collisions is the conse-

quence of the early stage Glasma flux tube in concert with the later stage radial

flow [54, 55]. The Color Glass Condensate (CGC) theory [56, 57] predicts that the

transverse fields in the two nuclei are transformed into the so called longitudinal

Glasma flux tubes right after the collision, as Fig. 1.8 illustrates. Since the parti-
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cles in a Glasma flux tube are from the same transverse position in the early times

of the collision, the particles fragmented from the same tube share the correlation

regardless of their rapidity. Thus, the particles produced from a Glasma flux tube

decay resemble the long-range flatness in ∆η for the near-side ridge. The small |∆φ|
feature arises from the effect of the radial flow on the flux tube. The radial flow is the

collective expansion of the QGP medium in the transverse direction. The particles

from the same flux tube experience the same radial flow velocity. The common radial

flow collimates the outgoing particles into a small ∆φ. The particles from the same

Glasma flux tube are focused by the radial flow to form the near-side ridge at small

∆φ independent of ∆η.

It is worthwhile to note that, even without radial flow, CGC predicts an enhanced

two-gluon density at small ∆φ. However, such an effect is too small to explain the

observed heavy-ion ridge. Such effect, on the other hand, may be related to the

observed ridge in small system collisions at the LHC and perhaps at RHIC as well

(see Chapter 5).

Figure 1.8. Glasma flux tubes for the collision of two nuclei. Figure taken
from [54].

1.5.4 Away-Side Shoulder

The away-side shoulder is the double-peak on the away side in central heavy

ion collisions [49]. Figure 1.9 shows the dihadron ∆φ correlations in 0-20% Au+Au



21

collisions at
√
sNN = 200 GeV from the PHENIX experiment [58]. Since the near-side

ridge and the away-side shoulder both exist in central heavy ion collisions, they could

originate from the same mechanism.

Figure 1.9. The dihadron correlated per-trigger yield ∆φ distributions in
0-20% Au+Au collisions at

√
sNN = 200 GeV by the PHENIX experiment.

Figure taken from [58].

The away-side shoulder behavior and its components have been analyzed as below.

The away-side dihadron yield per trigger is found to increase towards central collisions,

similar to the near-side ridge. Meanwhile, the average pT of the particles on the

away side associated with high pT trigger particles drops rapidly as the multiplicity

increases, which means the particles in the ridge become softer in central collisions

[49]. As the above two measurements show, there are more and softer particles

correlated with high pT trigger particles on the away side in central collisions than

that in peripheral collisions. Moreover, the dihadron away-side yield is observed to be

dependent on particle species. The baryon to meson ratio on the away side is enhanced

in central collisions, and is quantitatively similar to that for inclusive particles [58].

The initial explanation for the away-side shoulder is that it is a jet-medium effect

in central heavy ion collisions. One possibility is that the away-side jet is modified

by the QGP and results in the double-peak structure. Another possibility is that the
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recombination of the correlated soft particles induced via strong jet-medium interac-

tions causes the shoulder effect.

However, the observation of the away-side shoulder is only obtained from dihadron

correlations after elliptic flow subtraction. The initial state energy density fluctuation

can transform into higher order final state particle azimuthal correlations, such as

the third harmonic v3. Because the initial energy density distribution in the collision

zone was previously considered as smooth and the overlap region is almond shaped,

higher order odd harmonics were not expected. The v3 contribution was thus not

subtracted in the previous dihadron correlation measurements. Glauber Monte Carlo

simulations reveal the lumpiness in the initial state density and the non-zero higher

order harmonics in the final state, specially v3 [36]. The hydrodynamic flow v3 is a

soft physics feature, and it gives a ridge shape on the near side and a double-peak

shape on the away side. The shape of v3 makes it the most natural explanation for

both the near-side ridge and away-side shoulder.

The important question is then whether the v3 calculated from hydrodynamics

with a fluctuating initial state can quantitatively describe the experimental measure-

ments in heavy ion collisions. Chapter 3 describes the v3 measurement as performed

in this thesis work and its comparison with hydrodynamics.
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2. STAR Experiment

This thesis work is conducted with Au+Au and d+Au data taken by the STAR

detector at the RHIC accelerator.

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) is located at Brookhaven National Lab

in Upton, New York on Long Island. RHIC is a versatile collider. It can accelerate

many species of ions to a wide range in energy. The two major physics programs at

RHIC are spin physics, using polarized protons, and heavy ion physics. Reviews on

the spin physics program can be found in references [59, 60].

For heavy ion physics, RHIC accelerates heavy nuclei of various species to vari-

ous energies. From its commissioning in 2000 to the present day (2014), RHIC has

performed proton and proton (p+ p), deuteron and gold (d+Au), copper and copper

(Cu+Cu), gold and gold (Au+Au), copper and gold (Cu+Au), uranium and uranium

(U+U), helium 3 and gold (He3+Au) collisions. RHIC has conducted a beam energy

scan program for Au+Au collisions at center of mass energy
√
sNN from 7.7 GeV to

the top energy of 200 GeV per nucleon pair. The various energies facilitate the search

for the possible critical point of QCD phase diagram [61–64].

As Fig. 2.1 shows, there are six interaction points on RHIC’s 3.8 km long storage

ring, among which are four experiments. They are STAR at 6 o’clock, PHENIX

at 8 o’clock, PHOBOS at 10 o’clock, and BRAHMS at 1 o’clock. While PHOBOS

and BRAHMS finished their missions in 2005 and 2006, respectively, the STAR and

PHENIX experiments are still operating as of 2014.

After serving as a heavy-ion collider, RHIC has been proposed as a possible facility

for a future electron-ion collider to study the partonic structure of nuclei [65, 66].
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Figure 2.1. The RHIC accelerator complex. (Credit: Tai Sakuma)

2.2 STAR Detector

The Solenoidal Tracker at RHIC (STAR) detector is a general purpose detector.

STAR has various detector subsystems. The main detector component is the TPC.

It has full azimuthal and approximately 2.5 units of rapidity coverage. Three major

detector subsystems used in this analysis are the TPC, the Forward Time Projection

Chamber (FTPC) and the Zero Degree Calorimeter (ZDC), as shown in Fig. 2.2.

The conventional coordinate system at STAR uses the center of the Time Projec-

tion Chamber as the origin point. The beam pipe direction is the z direction with

the west direction as being positive. The x direction is pointing to the south and the

y direction is pointing up. For the d+Au collisions conducted in 2003 and 2008, the

deuteron beam was going to the west, the positive z direction, and the gold beam
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was going to the east, the negative z direction. The azimuthal direction is in the x-y

plane.

Figure 2.2. An illustration of a cutaway side view of the STAR detector.
Figure modified from [67].

2.2.1 Time Projection Chamber

The TPC is the primary tracking detector at STAR [68]. The TPC records

charged particle tracks, measures particle momentum and charge, and identifies par-

ticle species. It is 4 meters in diameter and 4.2 meters long, providing coverage

of −1.2 < η < 1.2 in pseudo-rapidity with high-quality tracking. With the STAR

magnetic field of 0.5 Tesla in the z direction, the TPC can measure particles with

momentum larger than 150 MeV/c.

The TPC tracks particles via ionization they cause in the TPC gas volume. As

Fig. 2.3 illustrates, the thin conductive Central Membrane, the concentric field cage

cylinders and two end caps provide a nearly uniform electric field along the beam pipe

z direction in the TPC. As a charged particle traverses in the TPC gas, it ionizes
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the gas atoms and electrons are released. The ionization electrons drift in the electric

field. The drifting electrons avalanche in the high field around the anode in the Multi-

Wire Proportional Chambers at the end cap readout. The current collected by wire

gives the hit location in the x-y plane and the current amplitude is proportional to

the ionization energy loss. Each end cap has 12 sectors with 45 pad rows which gives

a maximum of 45 hits per track. At the sector boundaries, the particle reconstruction

efficiency is low. Hence, the TPC has detecting deficiency at the sector boundaries.

The z position of the charged particle is measured by the product of electron drift-

ing time and drift velocity. The TPC is filled with P10 gas (Ar 90% + CH4 10%)

which provides a stable electron drift velocity that is insensitive to small variations

of temperature and pressure. With the hit points x, y and z known, the helix of

the particle motion is reconstructed. The particle helix and the STAR magnetic field

magnitude together are used to determined the particle momentum and the particle

charge sign using the Lorentz force equation of motion. The ionization energy loss

dE/dx measured from the readout current is used to identify the particle species.

The particle tracks reconstructed by the TPC hit points are called global tracks.

After finishing all track reconstructions in a collision event, the primary vertex of

the collision, which is the estimate of the interaction point, is reconstructed from the

global tracks. The Distance of Closest Approach (dca) is the closest distance from

the primary vertex to the track helix. The tracks with dca less than 3 cm are refitted

with the primary vertex, which are then called primary tracks. The primary track

has better momentum resolution than the global track because the primary vertex

position from all tracks is more precise than the single track when the track is from

the primary vertex. However, when the track is from a secondary vertex, for example

from a resonance decay, the primary track becomes less accurate than the global

tracks. Hence, the dca is used to distinguish whether a track is from the primary

vertex or a secondary vertex in the analysis.
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Figure 2.3. The illustration of the Time Projection Chamber at STAR.
Figure taken from [68].

2.2.2 Forward Time Projection Chamber

Two cylindrical FTPCs measure charged particles in the range 2.5 < |η| < 4 [69].

The FTPCs extend the STAR rapidity coverage. The major design difference of the

FTPC from the TPC is that the electric drift field is in the radial direction instead

of parallel to the beam axis. The radial field is used so that the FTPCs have high

resolution in regions close to the beam pipe where the density particle tracks is high.

The schematic diagram of an FTPC is shown in Fig. 2.4. In order to fit in the

available space inside the TPC (see Fig. 2.2), each FTPC is 75 cm in diameter by

120 cm long. The FTPCs share with the TPC major component the common STAR

magnetic field, in the z direction. The radial electric field of the FTPC is provided

by the high voltage inner electrode and the grounded outer cylinder wall. The FTPC

readout system is located outside the cylinder chamber surface due to its radial drift

field. The readout system has 6 sections in the azimuthal φ direction and 10 rows in

z to afford a maximum of 10 hit points.
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Similar to the TPC tracks, the FTPC tracks are reconstructed in two steps (global

and then primary tracks) with one additional calibration procedure (misalignment

correction). The FTPC global tracks are reconstructed from the FTPC hits. A colli-

sion vertex reconstructed from the FTPC global tracks are called FTPC “pre-vertex”.

The primary vertex reconstructed from the TPC tracks has a better position resolu-

tion than the FTPC pre-vertex because TPC has higher resolution than the FTPC.

The TPC and FTPC may potentially have a misalignment due to a possible shift (or

rotation) of the FTPC mounting points. Therefore, a misalignment correction pro-

cedure is conducted based on the discrepancy between the FTPC pre-vertex and the

TPC primary vertex. The FTPC primary tracks are reconstructed with the necessary

corrections to align the FTPC with the TPC.

To summarize, the FTPC track reconstruction procedure is: reconstruction of

FTPC global tracks, determination of FTPC pre-vertex, determination of the cor-

rection for misalignment between FTPC and TPC, and finally fitting the corrected

FTPC global tracks with TPC vertex to obtain the primary tracks.

2.2.3 Zero Degree Calorimeter

The ZDCs are two hadron calorimeters measuring the neutron energy along the

beam pipe after the charged particles are bent out of acceptance of the ZDC by

the dipole magnets, as Fig. 2.5 shows [70]. Two ZDCs are located symmetrically at

18 meters away from the collision intersection point on each side, with a horizontal

acceptance of ± 5 cm. In relativistic heavy ion collisions, the evaporation neutrons

are emitted from spectators, which do not participate in the collision. The ZDC

measures the energy of those neutrons. Meanwhile, the east and west ZDC signal

timing difference provides a measure of the collision location.

The two main purposes of the ZDCs are event characterization and luminosity

monitoring. Together with the Central Trigger Barrel (CTB), the ZDCs characterize

the collision centrality. The CTB measures the charged particle multiplicity in −1 <
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Figure 2.4. The schematic diagram of the FTPC. Figure taken from [69].

Figure 2.5. The schematic diagram of the ZDC in the context of collisions.
Figure taken from [70].

η < 1 with full φ coverage. The CTB is arranged around the TPC and covers similar

phase space as the TPC. The CTB records data faster than the TPC detector. The

arch shaped color band in Fig. 2.6 (same for left and right panels) is the ZDC measured
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neutral energy versus the CTB measured charged particle multiplicity distribution for

Au+Au collisions. In peripheral Au+Au collisions, the gold ions are largely untouched

and bent away by the dipole magnet. There are only a few neutron spectators.

Hence, the ZDC signal is small. Meanwhile, the number of the produced charged

particles from the collision is also small so that the CTB has a small signal. In

semicentral Au+Au collisions, since the gold ion spectators are mostly shattered

into nucleons, the maximum number of neutron spectators is reached. The ZDC

thus receives its maximum signal. The particle multiplicity at mid-rapidity for the

CTB coverage is intermediate between peripheral and central events. A central event

has the maximum multiplicity at mid-rapidity compared to more peripheral event,

because only a fraction of the nucleons are involved in the collision. The central event

gives the maximum CTB signal. However, when all the nucleons participate in the

interaction, the number of neutron spectators again becomes small ,resulting in a

small ZDC signal. The ZDC and CTB signals together give the collision centrality

information in Au+Au collisions.

Figure 2.6. An illustration of event characterization by the ZDC-measured
neutral energy versus the CTB-measured charged particle multiplicity
for minimum bias (left) and central triggered (right) Au+Au collisions.
(Plot from STAR trigger website http://www.star.bnl.gov/public/

trg/trouble/operating-trigger/introduction/CtbZdc.gif)

http://www.star.bnl.gov/public/trg/trouble/operating-trigger/introduction/CtbZdc.gif
http://www.star.bnl.gov/public/trg/trouble/operating-trigger/introduction/CtbZdc.gif
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2.2.4 Minimum Bias Event

The high RHIC crossing rate (∼ 10 MHz) and the low TPC response rate (∼ 100

Hz) call for the need for the trigger system to effectively select interesting events to

record. The event characteristics are examined using the fast detectors. When an

event passed a given trigger requirement, the trigger system sends a request to start

the recording cycle for the slower but more precise detectors,. Both the TPC and

the FTPCs are slow detectors because the electrons need time to drift to the readout

devices. Both the ZDCs and the CTB are fast detectors, and are used in the trigger

system.

Various triggers determine the recording of interesting events and the discarding

of the rest. The left and right panels in Fig 2.6, as alreay seen in Section 2.2.3, show

an example of two kinds of triggers for Au+Au collisions: minimum bias (left panel)

and central (right panel) trigger. The minimum bias (MB) triggered events are in the

yellow rectangle area with legend ‘Hadronic Min Bias.’ While zero bias events are for

all possible collisions, MB events are the best event sample estimation for the zero

bias events. The typical trigger requirements for a MB event in heavy ion collisions

are:

• there are ion bunches in both beam pipes for the possible collisions,

• at least one neutron is detected in each ZDC detector so that there is at least

one ion in each beam direction that has interacted,

• the timing difference between two ZDC signals satisfies the correct window to

assure the interaction point is inside the TPC, and

• at least 15 particles hit the CTB so that the interaction is an inelastic collision.

The central triggered events are those having a large number of particles hit the CTB

after already satisfying the MB trigger requirement. The central triggered events are

interesting because they are the most likely to have QGP formed. Other triggers are

implemented for various physics purposes as well as new detector monitoring: high
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pT jet events, beam polarization for spin studies, cosmic rays for calibrations, heavy

flavor for quarkonium production and so on. For d+Au collisions, the MB event

is triggered by the ZDC in the gold-beam going direction only. The STAR trigger

system makes sure that, in generally, the detector samples the maximum number of

collisions provided by RHIC within the detector response time.

2.2.5 Centrality Definition in Heavy-Ion Collisions

The impact parameter of a collision, which is the distance between the centers

of two colliding nuclei, varies from one event to the next. A central collision with

a zero impact parameter has a full overlap area, and tends to have the maximum

energy density. A peripheral collision of two nuclei with large impact parameter

has a small overlap zone, and tends to be similar to a p + p collision. The systems

resulted from the various initial heavy-ion collisions geometries are thus different.

Experimentally, the collision geometry setup cannot be controlled. On the other

hand, in order to compare physical quantities in A+A collisions (nucleus+nucleus)

to those in p + p collisions (nucleon+nucleon), one needs to know how many binary

nucleon+nucleon collisions (Ncoll) there are in an A+A collision, as what is done for

the nuclear modification factor (in Section 1.5). It is also natural to ask whether an

observable is related to Ncoll or the number of participating nucleons Npart. Collisions

with different geometries correspond to different Ncoll and Npart.

The Glauber model has been used to describe the collision geometry and to link

experimental observables with a theoretical b, Ncoll and Npart [71]. In high energy

heavy ion collisions, the de Broglie wavelengths of the nucleons are smaller than their

transverse size. Their total geometry cross section is approximately the sum of the

individual nucleon+nucleon collision cross sections. The inputs to the Glauber model

are the Wood-Saxon nuclear matter density and the inelastic nucleon-nucleon cross

section. For a given b, the Glauber Monte Carlo generates the nucleon distribution

in the nuclei according to the Wood-Saxon density profile. Further assumptions are
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made that the nucleons move in straight lines, and each nucleon+nucleon collision

happens independently. One nucleon in a nucleus interacts with the nucleons in the

other nucleus on their straight line path. The condition for a nucleon+nucleon colli-

sion to occur is that their distance apart is within the range of the nucleon+nucleon

inelastic cross section. The values of Ncoll and Npart are the output of the Glauber

model for a given b. An observable needs to be chosen to map the Glauber model

simulation to experimental data for the centrality definition. A basic assumption is

that the observable should be a monotonic function of the impact parameter b. As

Fig. 2.7 illustrates, the inclusive charged particle multiplicity can be used as a cen-

trality definition observable: the larger the multiplicity, the smaller the b. The dashed

lines are an illustration of the typical centrality binning. The illustrations of various

collision geometries in the beam view are also depicted for different centrality classes.

While the centrality binning procedure seems straightforward, there are several

factors one needs to keep in mind: the centrality observable selection bias, the fluctua-

tions in the experimental observable and in the Glauber model calculated parameters,

and the detector acceptance effect. The centrality observable selection bias especially

challenges the centrality definition in small systems where the particle multiplicity is

low, such as in d+Au collisions (see Chapter 5). For example, events with an ener-

getic jet tends to have a larger multiplicity than the average MB events. Selecting

on high multiplicity would therefore bias events towards jet productions and bias jets

towards larger energies. However, in heavy ion collisions, the multiplicity is high and

the particle production from the hard process is relatively unimportant compared

to the total multiplicity. Hence, the multiplicity selection bias is small in heavy ion

collisions.
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Figure 2.7. An illustration of the correlation of the inclusive charged
particle multiplicity and b and Npart from Glauber model for centrality
definition in Au+Au collisions. Figure taken from [71].
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3. Higher Harmonics v3

This chapter of thesis work has been summarized in [72].

The Fourier coefficients of the particle momentum anisotropy distribution have

been considered an important tool to study the QGP bulk properties. In heavy

ion physics, the first harmonic v1, directed flow, and the second harmonic v2, elliptic

flow, have been extensively studied both, experimentally and theoretically. The higher

harmonic v4 has also been studied and is primarily from the non-linear response to the

eccentricity ǫ2 (Eq. (1.1)) of the initial elliptic shape. The odd higher harmonics have

traditionally been considered to be zero if the collision energy density distribution is

smooth and symmetric. However, a Monte Carlo simulation study [36] reported that

event-by-event initial state geometry fluctuations can lead to non-zero higher order

odd harmonics. By studying the higher harmonics, one could gain information about

the lumpiness in the initial state energy density distribution. The different order of

the anisotropy harmonics each responds differently to the hydrodynamic viscosity.

The combination of the various harmonic measurements provides better constraints

on the hydrodynamic viscosity than the traditional elliptic flow alone. However, the

harmonics vn for n > 3 have non-linear responses to the lower harmonics. Hence v3

is an optimal observable to compare to hydrodynamic calculations.

3.1 Two-Particle Q-Cumulant Method

As discussed in Section 1.3, due to the unknown participant plane, the two-particle

correlation method has been used in experiment to measure anisotropic flow. If

using Eq. (1.5) directly, the nested loops over the particle pairs will become a CPU

consuming process. The mathematical technique of cumulants is thus adopted to

simplify the analysis calculation [38].
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The cumulant is expressed in terms of moments of the corresponding flow vector

Q. For one event with M particles, the nth order harmonic flow vector is

Qn ≡
M
∑

j=1

exp(inφj) with i =
√
−1, (3.1)

where, φj is the azimuthal angle of the jth particle. Take the absolute square of the

Qn,

QnQ
∗
n =

M
∑

j,k=1

exp in(φj − φk) = M +
M
∑

j,k=1,j 6=k

exp in(φj − φk). (3.2)

The second term on the right hand side of Eq. (3.2) is exactly the square of Eq. (1.5),

that is, v2n. Actually
∑

j,k=1,j 6=k

exp in(φj − φk) divided by the number of pairs is called

the second order moment,

〈2n〉 =
QnQ

∗
n −M

M(M − 1)
. (3.3)

The single bracket represents the average over particles in one event. The second

cumulant is equal to the average of the second moment over events.

Vn{2} = 〈〈2n〉〉. (3.4)

The double brackets represent the average over particles and events. The cumulant

gives the estimation of flow vn by,

vn{2} =
√

Vn{2}. (3.5)

For higher order cumulants:

vn{4} = 4

√

Vn{4}; (3.6)

vn{4} =
6

√

1

4
Vn{6}, (3.7)



37

where

Vn{4} =2〈〈2n〉〉2 − 〈〈4n〉〉; (3.8)

Vn{6} =〈〈6n〉〉 − 9〈〈2n〉〉〈〈4n〉〉+ 12〈〈2n〉〉3. (3.9)

〈4〉n =
|Qn|4 + |Q2n|2 − 2 ·Re[Q2nQ

∗
nQ

∗
n]

M(M − 1)(M − 2)(M − 3)

− 2
2(M − 2) · |Qn|2 −M(M − 3)

M(M − 1)(M − 2)(M − 3)
; (3.10)

〈6〉n =
|Qn|6 + 9 · |Q2n|2|Qn|2 − 6 ·Re[Q2nQnQ

∗
nQ

∗
nQ

∗
n]

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 4
Re[Q3nQ

∗
nQ

∗
nQ

∗
n − 3 ·Re[Q3nQ

∗
2nQ

∗
n]

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 2
9(M − 4) ·Re[Q2nQ

∗
nQ

∗
n] + 2 · |Q3n|2

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

− 9
|Qn|4 + |Q2n|2

M(M − 1)(M − 2)(M − 3)(M − 5)

+ 18
|Qn|2

M(M − 1)(M − 3)(M − 4)

− 6

(M − 1)(M − 2)(M − 3)
. (3.11)

As the above equations show, the nested loops are now replaced by means of

single particle quantities, which need only a single loop over particles to measure.

The complex calculation is largely simplified and the computing time is reduced.

Flow is a global property of particle anisotropic distributions in the whole event,

respective to a common harmonic plane (the participant plane). Nonflow is intrinsic

particle correlations unrelated to the common plane, such as jet correlations, reso-

nance particle decays, and quantum statistics [73–75]. These nonflow correlations

contaminate flow measurements.

Nonflow is mostly a short range correlation in ∆φ and ∆η. In order to eliminate

the contribution from nonflow, a ∆η-gap method is usually used for the two-particle

cumulant measurement. A large ∆η separation eliminates short range correlations,

hence, minimizes the nonflow contribution [76]. The ∆η-gap two-particle cumulant

flow measurement can be illustrated in an example with the STAR TPC which has an

acceptance −1 < η < 1 as the following. The ∆η-gap can be chosen as |∆η| > 1. Two
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η windows symmetric about mid-rapidity are chosen for the two-particle cumulant

measurement such that one particle lies in −1 < η < −0.5, named group A, and the

other particle in 0.5 < η < 1, named group B. The ∆η-gap size is determined by

two factors. One is the typical angular size of the nonflow contributions, such as the

size of the near-side jet cone [77]. The other factor is good statistics for the cumulant

results. In symmetric Au+Au collisions, the physics quantities in the two groups A

and B should be the identical, since the group A and B are chosen to be symmetric

about mid-rapidity. The second order harmonic moment for one particle in A and

the other particle in B for integrated pT (particles in all pT ) is

〈〈2n〉〉(A;B) =
Qn(A)Q

∗
n(B)

M(A)M(B)
. (3.12)

The two-particle flow estimate in window ηA and/or ηB is

vn(ηA,B) =
√

〈〈2n〉〉(A;B). (3.13)

Now suppose that group C is the particle of interest (e.g. within a particular pT bin

to study the pT -dependence of vn) and group A is the reference particle. A ∆η-gap

is often also applied between group C and group A. The vn of the particle of interest

(group C) can be calculated with the following equation:

vn(C) =
〈〈2n〉〉(C;A)

√

〈〈2n〉〉(A;B)
, (3.14)

3.2 Data Sample and Analysis Cuts

A total of 19 million minimum bias Au+Au events at
√
sNN = 200 GeV has been

collected by STAR and are used in this thesis. The main detector, the TPC, covers

the pseudo-rapidity −1 < η < 1. The minimum bias collisions are triggered by the

ZDC and the Beam-Beam Counter (BBC) detectors [67]. The centrality is measured

by the charged particle multiplicity in −0.5 < η < 0.5 in the TPC. The number of par-

ticipant nucleons Npart and the number of binary nucleon-nucleon collisions Ncoll for

the corresponding Au+Au collisions at
√
sNN = 200 GeV are listed in reference [78].
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The collision point is required to be within 30 cm of the TPC center along the beam

pipe to assure a uniform acceptance. The charged particle tracks are reconstructed

by fitting the hit points in the TPC. The number of hit points is required to be larger

than 51% of the number of possible hit points, and also more than 20 hits out of the

maximum 45 detecting points. The 51% requirement is to avoid split tracks (single

track is fitted as two tracks close together), and the 20 points requirement is to assure

there are enough points for a good fit. The dca to the primary collision vertex is less

than 2 cm.

3.3 v3 Measurement Result

Figure 3.1. Two-particle Q-cumulant flow for the second harmonic v2{2}
(black dots) and the triangular v3{2} (green stars), and four-particle Q-
cumulant flow for the second harmonic v2{4} (red squares) as a function
of centrality in Au+Au at 200 GeV.

Figure 3.1 shows the elliptic flow and third harmonic flow from two- and four-

particle Q-cumulant [38] measurements as a function of centrality for Au+Au colli-
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sions at 200 GeV. A ∆η-gap |∆η| > 1 is applied. The elliptic flow, v2, reaches its

minimum in the most central collisions. In these collisions, the two Au nuclei overlap

on top of each other such that the collision region is approximately a round shape.

The initial eccentricity ǫ2 of the collision system is small, which leads to a small el-

liptic flow for the final particles. As the centrality decreases, the eccentricity and

the v2 increase. The v2 reaches its maximum in collision of 40-50% centrality class.

As for more peripheral collisions, the overlap area decreases, and the energy density

becomes small, so less flow is developed.

The four-particle flow is smaller than the two-particle flow, because in the four-

particle flow the nonflow contribution, which is a few-body correlation, is suppressed.

In addition, the flow fluctuation contribution is negative in the four-particle flow

measurement, while it is positive in two-particle flow (see Chapter 4).

The magnitude of the third harmonic flow is less than the elliptic flow v2. The

v3 dependence on centrality is weak. Since v3 is due to event-by-event fluctuations,

it is not expected to be primarily correlated with the reaction plane, making it un-

likely that v3 will follow the strong centrality dependence as v2. Discussion on the

physics and measurements of event plane (which is the Ψn estimate experimentally)

correlations can be found in references [79].

Figure. 3.2 compares the two-particle v3 centrality dependence measurements with

three ∆η-gaps: |∆η| > 1 for one particle in −1 < η < −0.5 and the other in

0.5 < η < 1; |∆η| > 0.7 for one in −1 < η < −0.35 and the other in 0.35 < η < 1;

|∆η| > 0 for one in −1 < η < 0 and the other in 0 < η < 1. ∆η-gap size of 1 and

0.7 give similar v3 for all centralities. In peripheral collisions, |∆η| > 0 is larger than

those two with larger ∆η-gap. Their difference decreases as the centrality decreases.

Figure. 3.3 shows the measured v3 as a function of transverse momentum pT for two

centrality classes, 0-5% and 30-40%. For both centrality classes, v3 increases with pT

and saturates above 2− 3 GeV/c. The event-by-event hydrodynamic calculation [80]

are superimposed as the dashed curves. The theory calculation is done with the

viscosity to entropy density ratio of η/s = 0.08 and the Glauber initial state condition.
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Figure 3.2. Two-particle Q-cumulant flow for the third harmonic v3{2}
with |∆η|-gap |∆η| > 1 (pink stars), |∆η| > 0.7 (blue stars) and |∆η| > 0
(green stars) as a function of centrality in Au+Au at 200 GeV.

The hydrodynamic calculation gives a good description for the v3 trend below 2

GeV/c. Above 2 GeV/c, hydrodynamics may no longer be considered applicable.

However, the flow measurement may have nonflow contamination, which needs to be

addressed for an precise comparison (see Chapter 4).
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Figure 3.3. Two-particle Q-cumulant flow for the third harmonic v3{2}
with ∆η-gap |∆η| > 0.7 in 0-5% (pink dots) and 30-40% (blue dots) as a
function of transverse momentum pT in Au+Au at 200 GeV. The dashed
curves are the event-by-event hydrodynamic calculation [80].
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4. Isolation of Flow and Nonflow Correlations

This chapter of thesis work has been summarized in [81].

Through the comparison of anisotropic flow measurements and hydrodynamic

calculations, properties of the early stage of the collision system may be extracted.

One of the important variables, the ratio of the shear viscosity to entropy density of

the QGP, was found to be not much larger than the conjectured quantum limit of

1/4π [82].

The momentum-space anisotropic flow can be characterized by the Fourier coeffi-

cients vn as shown in Eq. (1.3). The participant plane Ψn is unknown experimentally.

The anisotropic flow is thus measured by particle correlations, such as two-particle or

multiple-particle correlations [73–75, 83]. (In event plane flow measurement method,

the event plane is first determined from all particles. Hence, it is effectively also a two-

particle correlation method.) Therefore, the flow measurement is contaminated by

intrinsic particle correlations unrelated to the participant plane. Those correlations

are generally called nonflow and are due to jet fragmentation, final state Coulomb

and strong interactions, resonance decays, etc. [73–75].

The two-particle correlation is given by Eq. (1.4). When nonflow is non-zero,

Vn{2} = vn,α · vn,β + δn, where vn,α, vn,β stand for the flow of two particles at α and β,

and δn is the nonflow contribution. Since the shear viscosity extracted from the flow

measurement is sensitive to even a small uncertainty [84], it is important to eliminate

nonflow contributions in flow measurements.

This chapter describes a method to separate flow and nonflow in a data-driven

way, with minimal reliance on models. Two- and four-particle cumulants with dif-

ferent pseudo-rapidity (η) combinations are measured. By exploiting the symmetry

of the average flow 〈v〉 in η about mid-rapidity in symmetric Au+Au collisions, ∆η-

independent and ∆η-dependent contributions are separated. Flow, as an event-wise



44

many-particle azimuthal correlation, reflecting properties on the single-particle level,

is dependent on η. However, nonflow is a few-particle azimuthal correlation that de-

pends on the ∆η distance between the particles. Hence, the ∆η-independent part is

associated with flow, while the ∆η-dependent part is associated with nonflow.

4.1 Analysis Method

In this analysis, the anisotropy was calculated with the two- and four-particle

Q-cumulant method using unit weight for event average [38]. The non-uniform ac-

ceptance is corrected (see Section 4.2.2). By using the moment of the flow vector,

this method calculates multi-particle cumulant from the mean moment values without

going over pair or high multiplet loops.

Figure 4.1. Illustration of one pair of two-particle cumulant V (ηα, ηβ) with
one particle at ηα and the other particle at ηβ.

The two-particle cumulant, with one particle at pseudo-rapidity ηα and another

at ηβ, illustrated in Figure 4.1, is [85, 86]

V {2} ≡ 〈〈ei(φα−φβ)〉〉 = 〈v(ηα)v(ηβ)〉+ δ(∆η)

≡ 〈v(ηα)〉〈v(ηβ)〉+ σ(ηα)σ(ηβ) + σ′(∆η) + δ(∆η),

(4.1)

where ∆η = |ηβ−ηα|. The single brackets represent the average over events only, while
the double brackets are for the average over particle pairs and the average over events.

For example, the harmonic number n is suppressed to lighten the notation. The
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average flow 〈v〉 is the anisotropy parameter with respect to the participant plane. σ

is the flow fluctuation of 〈v〉. Because average flow reflects the property on the single-

particle level, 〈v〉 and σ are only functions of η, and are ∆η-independent. However,

a ∆η-dependent flow fluctuation component could exist. The harmonic planes Ψn

could depend on η due to the initial energy density longitudinal fluctuation [87–89].

The σ′ is used to denote such ∆η-dependent part of the flow fluctuation. The δ is

nonflow, which is generally a function of ∆η, but may also depend on η.

For the four-particle cumulant, two particles are at ηα and another two are at

ηβ. For easier discussion, the square root of the four-particle cumulant is used, which

has the same order in 〈v〉 as the two-particle cumulant. The square root of the

four-particle cumulant is given by

V
1

2{4} ≡
√

〈〈ei(φα+φα−φβ−φβ)〉〉

≈ 〈v(ηα)〉〈v(ηβ)〉 − σ(ηα)σ(ηβ)− σ′(∆η), (4.2)

where the approximation assumes that the flow fluctuation is relatively small com-

pared with the average flow [90]. In V 1/2{4}, the contribution from the two-particle

correlations due to nonflow effects is suppressed, while the contribution from the four-

particle correlations due to nonflow effects ∝ 1/M3 (M is multiplicity) and is, there-

fore, negligible [91, 92]. The flow fluctuation has negative contribution in V 1/2{4},
while it is positive in V {2}.

The analysis method described in Ref. [86] is used to extract the values of the

average flow, 〈v〉, the ∆η-dependent and ∆η-independent flow fluctuations, σ′ and

σ, and the nonflow contribution, δ. Consider two pairs of two-particle cumulants as

Fig. 4.2 left panel illustrates. The difference between cumulants V {2} at (ηα, ηβ) and

(ηα,−ηβ) is

∆V {2} ≡ V {2}(ηα, ηβ)− V {2}(ηα,−ηβ)

≡ V {2}(∆η1)− V {2}(∆η2)

= ∆σ′ +∆δ, (4.3)
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Figure 4.2. Left: Two pair of two-particle cumulants, V {2}(ηα, ηβ) with
one particle at ηα and the other particle at ηβ, and V {2}(ηα,−ηβ) with
one particle at ηα and the other particle at −ηβ. One pair is denoted as
particle 1 and 2. The other pair is particle 1 and 2’. Right: Two pair
of four-particle cumulants, V {4}(ηα, ηβ) with two particles at ηα and the
other two particles at ηβ, and V {4}(ηα, ηβ) with two particles at ηα and
the other two particles at −ηβ. One quadruplet is denoted as particles 1,
2, 3 and 4. The other quadruplet is 1, 2, 3’ and 4’.
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where ηα < ηβ < 0 or 0 < ηβ < ηα is required. Similarly, for two pairs of four-particle

cumulants as illustrated in Fig. 4.2 right panel, the difference for V 1/2{4} yields,

∆V
1

2{4} ≡ V
1

2{4}(ηα, ηβ)− V
1

2{4}(ηα,−ηβ)

≡ V
1

2{4}(∆η1)− V
1

2{4}(∆η2)

≈ −∆σ′. (4.4)

Here ∆η1 ≡ ηβ − ηα, ∆η2 ≡ −ηβ − ηα, ∆σ′ = σ′(∆η1)−σ′(∆η2), and ∆δ = δ(∆η1)−
δ(∆η2). In symmetric Au+Au collisions, the two ∆η-independent terms in Eqs. (4.1)

and (4.2) have 〈v(ηα)〉〈v(ηβ)〉 = 〈v(ηα)〉〈v(−ηβ)〉 and σ(ηα)σ(ηβ) = σ(ηα)σ(−ηβ).

The differences from these ∆η-independent terms have zero contribution in Eqs. (4.3)

and (4.4). Therefore the differences in Eqs. (4.3) and (4.4) depend only on the ∆η-

dependent terms: flow fluctuation ∆σ′ and nonflow ∆δ.

The goal is to parameterize the flow fluctuation ∆σ′ and nonflow ∆δ. The plan

is as follows: extract the empirical functional form for

D(∆η) = σ′(∆η) + δ(∆η), (4.5)

from ∆V2{2} data; obtain the σ′ result from ∆V
1/2
2 {4}; use D and σ′ to determine δ;

finally 〈v〉 and σ.

4.2 Data Analysis

4.2.1 Data Samples and Analysis Cuts

This thesis work principally relies on measurements by the STAR TPC [93]. A

total of 25 million Au+Au collisions at
√
s
NN

= 200 GeV, collected with a minimum

bias trigger in 2004, were used. The events selected were required to have a primary

event vertex within |zvtx| < 30 cm along the beam axis to ensure nearly uniform

detector acceptance. The centrality definition was based on the raw charged particle

multiplicity within |η| < 0.5 in TPC. The charged particle tracks used in the analysis

were required to satisfy the following conditions: the transverse momentum 0.15 <
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pT < 2 GeV/c to minimize jet contributions; the distance of closest approach to the

event vertex |dca| < 3 cm to ensure that the particles are from the primary collision

vertex instead of a secondary particle decay vertex; the number of fit points along

the track greater than 20, and the ratio of the number of fit points along the track to

the maximum number of possible fit points larger than 0.51 for good primary track

reconstruction and to avoid split tracks [94]. For the particles used in this thesis

work, the pseudo-rapidity region was restricted to |η| < 1.

4.2.2 Non-Uniform Acceptance Correction

For a detector with uniform acceptance, the terms such as 〈〈cosφα〉〉 and 〈〈sinφα〉〉
vanish. Although STAR TPC has a nearly uniform acceptance, there could still be

some deficiencies. The non-uniform acceptance can be corrected by [38]

V {2} = 〈〈2〉〉 − [〈〈cosφα〉〉 · 〈〈cosnφβ〉〉+ 〈〈sinφα〉〉 · 〈〈sinφβ〉〉]; (4.6)
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V {4} = 〈〈4〉〉 − 2〈〈2〉〉2

− 6〈〈cosφα〉〉3〈〈cosφβ〉〉+ 2〈〈cosφα〉〉2〈〈cos(φβ + φα)〉〉

−2〈〈cosφα〉〉〈〈cos(φβ+φα−φα)〉〉+4〈〈cosφα〉〉2〈〈cos(φβ−φα)〉〉−〈〈cosφα〉〉〈〈cos(φβ−φα−φα)〉〉

+ 4〈〈cosφα〉〉〈〈cosφβ〉〉〈〈cos(φα − φα)〉〉 − 〈〈cosφβ〉〉〈〈cos(φα − φα − φα)〉〉

+ 2〈〈cosφα〉〉〈〈cosφβ〉〉〈〈cosn(−φα − φα)〉〉 − 〈〈cos(φβ + φα)〉〉〈〈cos(−φα − φα)〉〉

− 6〈〈cosφα〉〉〈〈cosφβ〉〉〈〈sinφα〉〉2 − 2〈〈cos(φβ + φα)〉〉〈〈sinφα〉〉2

+ 4〈〈cos(φβ − φα)〉〉〈〈sinφα〉〉2 − 6〈〈cosφα〉〉2〈〈sinφα〉〉〈〈sinφβ〉〉

+ 4〈〈cos(φα − φα)〉〉〈〈sinφα〉〉〈〈sinφβ〉〉 − 2〈〈cosn(−φα − φα)〉〉〈〈sinφα〉〉〈〈sinφβ〉〉

− 6〈〈sinφα〉〉3〈〈sinφβ〉〉+ 4〈〈cosφα〉〉〈〈sinφα〉〉〈〈sin(φβ + φα)〉〉

− 2〈〈sinφα〉〉〈〈sin(φβ + φα − φα)〉〉+ 〈〈sinφα〉〉〈〈cos(φβ − φα − φα)〉〉

+ 〈〈sinφβ〉〉〈〈sin(φα − φα − φα)〉〉 − 2〈〈cosφβ〉〉〈〈sinφα〉〉〈〈sin(−φα − φα)〉〉

− 2〈〈cosφα〉〉〈〈sinφβ〉〉〈〈sin(−φα − φα)〉〉+ 〈〈sin(φβ + φα)〉〉〈〈sin(−φα − φα)〉〉.
(4.7)

The non-uniform acceptance correction for 20-30% centrality was 0.7% for the

second harmonic two-particle cumulant V2{2}, and 0.5% for the square root of the

second harmonic four-particle cumulant V
1/2
2 {4}. The largest acceptance correction

was 1.8% for V2{2} in the most central collisions, and 1% for V
1/2
2 {4} in the most

peripheral collisions.

4.2.3 Track Merging Effect

When two track trajectories in the TPC are too close to each other, the recon-

struction algorithm has difficulty to identify them as two tracks but instead only one

track. The deficiency of reconstruction of two close tracks is called the track merg-

ing effect. While track merging effect on two particles’ azimuthal angle ∆φ depends

on the combination of two particles’ charges and the magnetic field polarity, the ef-

fect on pseudo-rapidity ∆η is independent of charges and magnet field. As Fig. 4.3

shows, for particles with 0.15 < pT < 2 GeV/c in Au+Au collisions at
√
s
NN

= 200
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GeV, the track merging effect is limited to two particles with |∆η| < 0.05. Since the

track merging affects only the region |∆η| < 0.05, the Vn{2} and Vn{4} points in the

affected region were excluded from further analysis.

Figure 4.3. The ∆η − ∆φ two-particle correlation demonstrating deficit
due to track merging effect in Au+Au collisions at

√
s
NN

= 200 GeV for
particles in 0.15 < pT < 2 GeV/c. The x axis is the pseudo-rapidity
separation between two particles ∆η and the y axis is their azimuthal
angle difference ∆φ. The shown case is for two positive particles and
positive full magnetic field polarity (positive z direction). The red color
represents large number of pairs. The blue color represents small number
of pairs.

4.2.4 Two- and Four-particle Cumulant Measurements

The two- and four-particle cumulants were measured for various (ηα, ηβ) pairs and

quadruplets. Figure 4.4 shows the results for 20-30% central Au+Au collisions. Panels

(a) and (b) are the two-particle second and third harmonic cumulants, V2{2}(ηα, ηβ)
and V3{2}(ηα, ηβ), respectively. Panel (c) is the square root of the four-particle second
harmonic cumulant, V

1/2
2 {4}(ηα, ηα, ηβ, ηβ). From the points on the diagonal to the

points off the diagonal, the gap between the ηα and ηβ, which is |∆η| = |ηα − ηβ|,
increases. Figure 4.4 shows V2{2} decreases as |∆η| increases. The points on the

diagonal are affected by track merging effect (see Section 4.2.3) and thus they are
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excluded from further analysis. V3{2} suggests the same trend. However, V3{2} mag-

nitude is smaller, and decreases more rapidly with ∆η than V2{2} does. V
1/2
2 {4} is

roughly constant and the magnitude is smaller than that of V2{2} which is consis-

tent with the expectation that V
1/2
2 {4} is less affected by the nonflow and the flow

fluctuation is negative in V
1/2
2 {4}.
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Figure 4.4. The second (a) and third (b) harmonic two-particle cumu-
lants for (ηα, ηβ) pairs and the second harmonic four-particle cumulant
for (ηα, ηα, ηβ, ηβ) quadruplets for 20-30% central Au+Au collisions at√
s
NN

= 200 GeV.

4.2.5 Nonflow Parameterization

Fig. 4.5(a) shows the measured two-particle second harmonic cumulant difference

∆V2{2}. For each ∆η1 (the points with same color), the data value appear to be linear

in ∆η2 − ∆η1 except near ∆η1 = ∆η2 as shown by dashed lines in Fig. 4.5 (a) and

(b). Moreover, the magnitude of ∆V2{2} decreases with increasing ∆η1. Linear fits

of the dashed lines indicate that the intercept decreases exponentially with increasing

∆η1, and the slopes are all similar. Such behavior can be described mathematically as

a exp(−∆η1
b
)+k(∆η2−∆η1). In order to express the measured two-particle cumulant

difference in the form of D(∆η1)−D(∆η2) = (σ′(∆η1)+δ(∆η1))−(σ′(∆η2)+δ(∆η2))

=(σ′(∆η1)−σ′(∆η2))+(δ(∆η1)−δ(∆η2)), two improvements are made to the initial

guess of the exponential+linear form of function D(∆η). First, a term a exp(−∆η2
b
) is

added which is small for data with ∆η2 significantly larger than ∆η1. Second, because
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Figure 4.5. The (a) V2{2} and (b) V3{2} difference between the pairs at
(ηα, ηβ) and (ηα,−ηβ). The dashed lines are linear fits for each data set
of ∆η1 value separately. The solid curves are a single fit of Eq. (4.8) to

all data points with different ∆η1. (c) The V
1/2
2 {4} difference between

quadruplets at (ηα, ηα, ηβ, ηβ) and (ηα, ηα,−ηβ,−ηβ). The dashed line is a
linear fit to the data points. The gray band is the systematic error. The
data are from 20-30% central Au+Au collisions at

√
s
NN

= 200 GeV.

the linear term is unbounded in ∆η1 and ∆η2, it is replaced with the subtraction of

two wide Gaussian terms. The Gaussian functions tend to zero as the exponents

become large, consistent with the behavior of nonflow. The measured two-particle

cumulant difference can then be described by Eq. (4.9):

D(∆η) = a exp

(

−∆η

b

)

+ A exp

(

−∆η2

2σ2

)

, (4.8)

such that

∆V {2} = D(∆η1)−D(∆η2)

=

[

a exp

(−∆η1
b

)

+ A exp

(−∆η21
2σ2

)]

−
[

a exp

(−∆η2
b

)

+ A exp

(−∆η22
2σ2

)]

,

(4.9)

follows from Eq. (4.3). Function D(∆η) has four parameters a,A, b, and σ. These

parameters were determined by fitting Eq. (4.9) simultaneously to all measured two-

particle cumulant difference data points with different ∆η1. The fit results are shown

in Fig. 4.5(a) as the solid curves with χ2/ndf ≈ 1. The parameterization is valid
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within the fitting errors. The same procedure was repeated for the third harmonic

V3{2} as shown in Fig. 4.5(b). The fit results give the ∆η-dependent part of the

two-particle cumulant as Eq. (4.8). Thus, the form of the function D is data-driven.

A similar procedure is followed on the measured difference of the square root of

the four-particle cumulant, Eq. (4.2). ∆V
1/2
2 {4} = σ′(∆η1)−σ′(∆η2) is fit by a linear

function k′(∆η2 − ∆η1), as the dashed line shows in Fig. 4.5(c). The slope k′ from

the fit is (1.1±0.8)×10−4. In Fig. 4.5(c), each data point is the average of ∆V
1/2
2 {4}

for all ∆η1 at same ∆η2 − ∆η1 value. With the σ′(∆η) result from the ∆V
1/2
2 {4}

parameterization, the contribution from nonflow, δ, can then be determined through

Eq. (4.5).

Subtracting the parameterized D of Eq. (4.8) from the measured two-particle

cumulants, V {2}, yields, from Eq. (4.1), the ∆η-independent terms 〈v2〉 ≡ 〈v〉2 + σ2.

Together with V 1/2{4} from Eq. (4.2), the values of 〈v〉 and σ may be individually

determined.

4.3 Results and Discussion

Figure 4.6 (a) and (b) show the decomposed flow with ∆η-independent flow fluc-

tuations 〈v(ηα)v(ηβ)〉 (see Eq. (4.1)) for v2 and v3, respectively. The results are found

to be constant over η in the measured pseudo-rapidity range |η| < 1. Therefore,

the observed decrease of V {2} in Fig. 4.4 with increasing ∆η off diagonal is due to

contributions from nonflow and ∆η-dependent fluctuations. Note that there is no

assumption about the η dependence of flow in the analysis; the flow can be ∆η-

independent but η-dependent. The observation that the decomposed flow and flow

fluctuations are independent of η is, therefore, significant.

Figure 4.6 (c) and (d) show the projections of 〈v(ηα)v(ηβ))〉 in Fig. 4.6 (a) and (b)

onto one η variable. The shaded band shows the systematic uncertainty, dominated by

the systematic errors in the subtracted D(∆η) term. For comparison, the projection

of the V2{2} is also shown, where the shaded band is the systematic uncertainty. The
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Figure 4.6. The decomposed 〈v2〉 = 〈v〉2 + σ2 for the second (a) and
third (b) harmonics for (ηα, ηβ) pairs. (c): The two- and four-particle

cumulants, V2{2} (solid red squares) and V
1/2
2 {4} (solid blue triangles),

and the decomposed 〈v22〉 (solid green dots) as a function of η for one
particle while averaged over η of the partner particle. The cyan band
on top of V

1/2
2 {4} points present V

1/2
2 {4} + σ′. (d): V3{2} (solid red

squares) and 〈v23〉 (solid green dots) as a function of η. The dashed lines
are the mean values averaged over η for 20-30% central Au+Au collisions
at

√
s
NN

= 200 GeV.

projections are the respective quantities as a function of η of one particle averaged

over all η of the other particle with unity weight. The flows with ∆η-independent

fluctuation averaged over η are
√

〈v22〉 = 6.27% ± 0.003%(stat.)+0.08
−0.07%(sys.) and

√

〈v23〉 = 1.78%± 0.008%(stat.)+0.09
−0.16%(sys.) for the pT range 0.15 < pT < 2 GeV/c in

the 20-30% centrality Au+Au collisions. The quoted statistical errors are from the

V {2} measurements, while the systematic errors are dominated by the parameteriza-
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Figure 4.7. The ∆η-dependent component of the two-particle cumulant
with ∆η-gap, D̄ in Eq. (4.11), of the second (a) and third (b) harmonics
is shown as a function of ∆η-gap |∆η| > x. (x is the x-axis value.)
The shaded bands are systematic uncertainties. In (a) the estimated σ′ is
indicated as the straight line, with its uncertainty of±1 standard deviation
as the cross-hatched area for 20-30% central Au+Au collisions at

√
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Figure 4.8. The nonflow,
√

D̄2 (solid dots),
√
δ2 (open stars),

√

D̄3 (solid
triangles) and flow,

√

〈v22〉/2 (open circles),
√

〈v23〉 (open triangles) results
are shown as a function of centrality percentile for the second (a) and third
(b) harmonics, respectively. The statistical errors are smaller than the
symbol sizes. The systematic errors are denoted by the vertical rectangles.

tion of D. The difference between V {2} and 〈v2〉 in Fig. 4.6(c) represents the D(η)

value versus η of one particle averaged over all η of the other particle.
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Figure 4.6(c) also shows the V
1/2
2 {4} projection as a function of η as the solid blue

triangles. V
1/2
2 {4} is independent of η. The cyan band is V

1/2
2 {4} + σ′ = 〈v〉2 − σ2,

with the systematic uncertainty dominated by the fitting uncertainty in σ′. The

difference between the decomposed 〈v2〉 = 〈v〉2 + σ2 and V
1/2
2 {4}+ σ′ = 〈v〉2 − σ2 is

two times the ∆η-independent flow fluctuation, which is also constant over η within

the measured acceptance. The relative ∆η-independent elliptic flow fluctuation is

calculated as

σ2

〈v2〉
=

√

√

√

√

〈v22〉 − (V
1

2

2 {4}+ σ′)

〈v22〉+ (V
1

2

2 {4}+ σ′)

= 34%± 2%(stat.)± 3%(sys.), (4.10)

where the systematic error is dominated by those in the parameterization of σ′. The

relative fluctuation result is consistent with that from the PHOBOS experiment [95]

and the previous STAR upper limit measurement [78].

A ∆η-gap is usually applied to reduce nonflow contamination in flow measure-

ments (Chapter 3). The nonflow D̄(|∆η|) contribution in the ∆η-gap measurement

is calculated as:

D̄(|∆η|) =
∫ 2

|∆η|
d∆η′D(∆η′)

2− |∆η| . (4.11)

|∆η| = 2 is the acceptance limit of the TPC. D̄ is the average of D with |∆η| larger
than a certain value. Figure 4.7 (a) and (b) shows D̄(|∆η|) as a function of ∆η-gap

|∆η| > x (x is the x-axis value) for the second and third harmonics, respectively. The

bands are the systematic errors estimated from the fitting errors and the different

fitting functions as described previously. These errors are correlated because all the

errors are from the same fit parameters of the function D.

As noted above, D̄(|∆η|) is comprised of two parts: the contribution from the ∆η-

dependent flow fluctuation σ′, and the term representing the nonflow δ. In Fig. 4.7(a),

these two contributors are estimated separately. The straight line is an estimate

of σ′. The cross-hatched area is its uncertainty of ±1 standard deviation. The
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difference between the black solid points D̄(|∆η|) and the straight line σ′ is the

nonflow contribution. For both the second harmonic and the third harmonic shown

in Fig. 4.7(a) and Fig. 4.7(b), respectively, D̄(|∆η|) decreases as the ∆η-gap between

two particles increases.

Figure 4.8 shows
√

〈v2〉 and
√
D̄ for all measured centralities for the second

harmonic (a) and the third harmonic (b) with |∆η| > 0.7 [76]. The errors on
√

〈v2〉 and
√
D̄ are anti-correlated. Taking |∆η| > 0.7, the relative magnitude

D̄2/〈v22〉 = 5% ± 0.004%(stat.) ± 2%(sys.) for 20-30% centrality. It is clear that

D̄2 increases as the collisions become more peripheral.
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Figure 4.9. The relative elliptic flow fluctuation σ2/〈v2〉 centrality depen-
dence in

√
s
NN

= 200 GeV Au+Au collisions. The statistical errors are
shown by the error bars. The systematic errors are denoted by the vertical
rectangles.

The ∆η-dependent nonflow contribution is primarily caused by near-side (small

∆φ) correlations. These correlations include jet correlations and resonance decays

which decrease with increasing ∆η. The ∆η-independent correlation is dominated

by anisotropic flow. However, there should be a ∆η-independent contribution from

nonflow, such as away-side dijet correlations. The away-side jet contribution should

be smaller than the near-side nonflow contribution, because, in part, some of the

away-side jets are outside the detector acceptance and, therefore, unrecorded.
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Figure 4.9 shows σ2/〈v2〉 for varies measured centralities. From the central to

the peripheral collisions, the relative ∆η-independent elliptic flow fluctuation slightly

increases. The statistics are limited in the most peripheral centrality bin.

4.3.1 Systematic Uncertainties

The systematic errors for V {2} and V 1/2{4} are estimated by varying event and

track quality cuts: the primary event vertex from |zvtx| < 30 cm to |zvtx| < 25 cm;

the number of fit points along the track from greater than 20 to 15; the distance

of closest approach to the event vertex from |dca| < 3 cm to |dca| < 2 cm. The

systematic errors for events at 20-30% centrality were found to be 1% for V2{2} and

2% for V
1/2
2 {4}, and the same order of magnitude for other centralities.

The fitting error on the parameterized σ′ from ∆V 1/2{4} is treated as a systematic

error, which is 70%, since σ′ is consistent with zero in less than 2-σ standard deviation.

Similarly, the fitting errors on the parameters used in D are treated as systematic

errors that are propagated through to the total uncertainty on D. In addition, there

is a systematic error on D that is associated with the choice of fitting function shown

as Eq. (4.8), the magnitude of which was estimated using different forms of the

fitting function. The forms tried included: an exponential term plus a linear term,

a Gaussian function plus a linear term, an exponential function only, a Gaussian

function only, and an exponential function plus a term of the form e−
1

2
(∆η

σ
)4 .

The total estimated uncertainty in the second harmonic of D(∆η) is an average of

40% based on the different sources evaluated. The systematic error on D also applies

to the decomposed flow through 〈v2〉 = V {2} −D.

4.4 Summary

Two- and four-particle cumulant azimuthal anisotropies are analyzed between

pseudo-rapidity bins in Au+Au collisions at
√
sNN =200 GeV from STAR. Exploiting

the collision symmetry about mid-rapidity, The ∆η-dependent and the ∆η-independent
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azimuthal correlations in the data are isolated. The ∆η-independent correlation 〈v2〉,
is dominated by flow and flow fluctuations, and is found to be constant over η within

the measured range of ±1 unit of pseudo-rapidity. In the 20-30% centrality Au+Au

collisions, the elliptic flow fluctuation is found to be σ2/〈v2〉 = 34% ± 2%(stat.) ±
3%(sys.). The ∆η-dependent correlation D(∆η), which may be attributed to non-

flow, is found to be D̄2/〈v22〉 = 5% ± 2%(sys.) at |∆η| > 0.7 for 0.15 < pT < 2

GeV/c.
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5. ‘Ridge’ in d+Au

The deuteron-gold (d+Au) collisions at RHIC were initially proposed as a control

experiment to disentangle cold nuclear effect and QGP final state effect for the strong

suppression of high pT particles in central heavy-ion collisions [96–99]. The naive

expectation for the small d+Au system is that only the cold nuclear matter effect

needs to be considered, where little collective flow can develop. The observation

of the long-range ∆η dihadron correlation at small ∆φ (called the ridge) in p + p

and p+Pb collisions at the Large Hadron Collider (LHC) [100–103] was, therefore,

unexpected. As discussed in Section 1.5, the ridge was first discovered in heavy-ion

collisions and primarily attributed to triangular anisotropic flow.

To reduce/remove contributions from jetlike correlations, low-multiplicity data

were subtracted from dihadron correlations in high-multiplicity data in previous

experiments. The application of such a subtraction procedure led to the obser-

vation of a back-to-back ridge at ∆φ ∼ π, along with the ridge at ∆φ ∼ 0 in

p+Pb at
√
s
NN

= 5.02 TeV. Using the same subtraction technique, the PHENIX

experiment also observed a (near- and away-side) double ridge in d+Au collisions at
√
s
NN

= 200 GeV within their available acceptance of |∆η| < 0.7 [104]. As observed

in larger systems, the double ridge is reminiscent of a non-jet, elliptic flow contri-

bution. The ALICE and CMS experiment also reported multi-particle azimuthal vn

for p+Pb [105, 106]. The vn mass ordering for the π, K and p at low pT , which is

one of the hydrodynamic expectations, is observed in p+Pb by the ALICE experi-

ment [107]. The PHENIX experiment also reported a vn mass ordering for π and

p in d+Au collisions [108]. Other physics mechanisms are also possible, such as the

color glass condensate, where the two-gluon density is enhanced at small ∆φ over a

wide range of ∆η [109–112], the initial state gluon bremsstrahlung effect calculated
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from the perturbative QCD and sourced by the color antennas [113], or the quantum

initial anisotropy from the space momentum uncertainty principle [114].

If jetlike correlations are the same in high- and low-multiplicity events, the di-

hadron correlation difference between these two event classes would be non-jet physics.

However, jet particle production contributes to the overall multiplicity. The selection

of high-multiplicity events may demand a relatively large number of jet-correlated

particles. In fact, such differences have been observed previously by STAR in the

measured two-particle correlations in p + p and various multiplicity d+Au colli-

sions [94,115]. STAR, with its large acceptance, is well suited to investigate whether

and how much event selection affects dihadron jet correlations in d+Au collisions.

5.1 Data Sample and Analysis Cuts

A total of 6.6 million Minimum-Bias (MB) d+Au collisions at
√
sNN = 200 GeV

were used in this thesis. These were triggered by the coincidence of signals from

the ZDC and the BBC in the year 2003 [67]. The events were selected with the

trigger setup names dAuMinBias (2.2 millions) and dAuCombined (4.4 millions) in

the dataset. The data chain was reconstructed with the P04if library. The trigger

ID was required to be 2001 or 2003. The reconstructed primary tracks in the TPC

and the FTPCs were used in the analysis. The event’s primary vertex position in z

direction was required to be within |zvtx| < 50 cm from the TPC center. The detailed

track cuts are listed in Table 5.1.

5.2 Centrality Definition in d+Au Collisions

Centrality selections in d+Au collisions are determined by three measures:

• raw charged particle multiplicity (primary tracks) within |η| < 1 in the TPC,

• raw charged particle multiplicity (primary tracks) within −3.8 < η < −2.8 in

the FTPC Au-going side, and
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Table 5.1
d+Au collisions track quality cuts

TPC |η| < 1 or FTPC 2.8 < |η| < 3.8

Hit points for TPC tracks ≥ 25 or FTPC tracks ≥ 5

Hit points/possible hit points ≥ 0.51

dca < 3 cm

1 < pT < 3 GeV/c

• The neutral charge energy deposit in the Au-going side ZDC quantified by the

attenuated ADC signal.

The event cuts for each selection are listed in Table 5.2.

Table 5.2
Centrality Cuts

Centrality TPC FTPC-Au ZDC-Au

0-20% Nch ≥ 29 Nch ≥ 17 ADC ≥ 128

40-100% Nch ≤ 19 Nch ≤ 9 ADC ≤ 116

As stated previously in section 5.1 and section 2.2.5, the centrality selection

method will be affected by jet contributions, especially in small systems with lower

multiplicities. For example, when selecting central d+Au collisions by demanding a

high multiplicity in an event, the event in which the jet generated more particles will

be preferred. The selected jet may have a large energy so that it can produce more

particles, or because of the way the jet fragments there could be more particles in

the final state. In short, events with different jet fragmentations are selected into

different centrality classes.
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5.2.1 Comparison between Centrality Definitions

In order to assess the reliability of the centrality selection methods, the relation-

ships between various centrality selection variables are studied in Figure 5.1 through

5.3. The straight lines are the cuts for the centrality classes of 0-20%, 20-40% and

40-100%. The three left panels are the scatter plots: each dot corresponds to one

event. The middle and the right panels are the projections of the two quantities on

x- and y-axis, respectively. For example the middle panel in Fig. 5.1 is the average

TPC multiplicity as a function of the FTPC-Au multiplicity.

Figure 5.1. Left panel: The FTPC Au-side multiplicity versus TPC mul-
tiplicity in d+Au collisions at

√
s
NN

= 200 GeV. Middle panel: The mean
TPC multiplicity versus FTPC Au multiplicity. Right panel: The mean
FTPC multiplicity versus TPC East multiplicity. The color represents the
number of events, in increasing order from blue to red.

In Fig. 5.1, the middle and the right panels show that there is a positive correlation

between the mid-rapidity multiplicity measured by the TPC and the Au-going side

forward multiplicity measured by the FTPC-Au, although the fluctuations are large

as seen in the left panel.

In Fig 5.2, the middle panel shows that the FTPC-Au multiplicity slightly in-

creases as the ZDC-Au energy increases when the ZDC-Au Analog-to-Digital Con-

verter (ADC) signal (the signal for the ZDC measured neutral energy) is less than

100. At 100 < ZDC-Au < 150, the FTPC-Au multiplicity rapidly increases with
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Figure 5.2. The FTPC Au-side multiplicity versus Au-side ZDC ADC in
d+Au collisions at

√
s
NN

= 200 GeV.

the ZDC-Au ADC. At ZDC-Au ADC > 150, the FTPC-Au multiplicity appears to

saturate. The right panel shows that the ZDC energy rapidly increases as FTPC-Au

multiplicity at FTPC multiplicity < 10 and then it starts to saturate around FTPC

multiplicity > 20.

Figure 5.3. The Au-side ZDC ADC versus TPC multiplicity in d+Au
collisions at

√
s
NN

= 200 GeV.

The relationship between the ZDC-Au energy and the TPC multiplicity is similar

to the relationship between the ZDC-Au energy and the FTPC-Au multiplicity as

shown in Fig. 5.3.

In summary, the TPC, the FTPC-Au multiplicity and the ZDC-Au neutral energy

have positive but weak correlations.
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5.2.2 Comparison with Au+Au Centrality

For comparison, Figures 5.4 to 5.6 show the relationships between the centrality

selections for Au+Au collisions at
√
s
NN

= 200 GeV. They use the same data sample

as in Chapter 3. The TPC multiplicity and FTPC-Au multiplicity show an approx-

imately linear relationship at low multiplicity. At high multiplicity, the FTPC-Au

multiplicity starts to saturate as the TPC multiplicity increases. Figure 5.6 is similar

to Fig. 2.6. While in Fig. 2.6 the mid-rapidity multiplicity is measured by the CTB,

in Fig. 5.6 the mid-rapidity multiplicity is measured by the TPC. Figure 5.5 is simi-

lar to Fig. 5.6, but the FTPC-Au saturates at higher multiplicity. From Figures 5.5

and 5.6, the multiplicity (at mid-rapidity and/or forward rapidity) and the ZDC

measured neutral energy have a non-monotonic relationship. Their relationship’s be-

havior is discussed in Section 2.2.3. Comparing Figure 5.1 through 5.3 to Figure 5.4

through 5.6, the correlation between various centrality estimating quantities in d+Au

collisions are similar to those in peripheral Au+Au collisions (low multiplicity region)

as the correlations have similar shapes.

Figure 5.4. The FTPC-Au versus TPC multiplicity in Au+Au collisions
at

√
s
NN

= 200 GeV.
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Figure 5.5. The FTPC Au-side multiplicity versus Au-side ZDC ADC in
Au+Au collisions at

√
s
NN

= 200 GeV.

Figure 5.6. The Au-side ZDC ADC and TPC multiplicity in Au+Au
collisions at

√
s
NN

= 200 GeV.

5.3 Correlation Analysis

The TPC-TPC dihadron correlation is measured with the trigger and associated

particles both from the TPC detector. The TPC-FTPC correlation is measured

with the trigger particle from the TPC and the associated particle from the FTPC.

Both the correlations are normalized per trigger particle. The detector acceptance

is corrected by the event-mixing technique. The dihadron correlation is given in

Eq. (1.6). The details of the correlation analysis are described in Section 1.5.

The left panel of Fig. 5.7 shows S(∆η,∆φ) for the TPC-TPC correlation, and

the left panel fo Fig. 5.8 shows S(∆η,∆φ) for the TPC-FTPC correlation. Both the
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trigger and the associated particle are from 1 < pT < 3 GeV/c. The correlation data

are corrected for the associated particle tracking efficiency of 85% ± 5% (sys.) for

TPC tracks, and 75% ± 5% (sys.) for FTPC tracks [94, 115]. The efficiency does

not vary from central to peripheral d+Au collisions. The right panel of Fig. 5.7

shows B(∆η,∆φ) for the TPC-TPC correlation, and the right panel of Fig. 5.8 shows

B(∆η,∆φ) for the TPC-FTPC correlation. The triangle shape of the mixed event is

due to the η acceptance cut of −1 < η < 1 for TPC, and 2.8 < |η| < 3.8 in FTPC.

B(∆η,∆φ) is normalized to be 1 at ∆η|100% = 0 for the TPC-TPC correlation, and

at ∆η100% = ±3 for the TPC-FTPC correlation (−3 for FTPC east and 3 for west) by

dividing by 〈B(∆η|100%,∆φ)〉. This is because the detector pair acceptance is 100%

at ∆η|100%. In order to mix the events with similar detector geometry and collision

conditions, the mix event matching requirements are imposed. The mixed events are

required to be within 1 cm in zvtx, and to have the same multiplicity (for TPC or

FTPC centrality) or within the same ADC bin of bin size 10 (for ZDC centrality).

To increase statistics, ten mixed events are performed for each trigger particle.
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Figure 5.7. Real event (left panel) and mixed event (right panel) TPC-
TPC correlations in 0-20% central d+Au collisions.

After the two-particle correlations are measured, two approaches are taken to

analyze the data. One is to look at the associated particle correlated yield per trigger

particle after ZYAM background subtraction. It is assumed that the underlying event
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Figure 5.8. Real event (left panel) and mixed event (right panel) TPC-
FTPC correlations in 0-20% central d+Au collisions.
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Figure 5.9. The two-particle TPC-TPC correlations in 0-20% (left panel)
and 40-100% (right panel) central d+Au collisions. The two-particle cor-
relation is corrected by mixed events.

background in d+Au collisions is a uniform distribution over ∆φ, with magnitude

depending on ∆η. The ZYAM background value is determined by the lowest yield

of the ∆φ distribution in each ∆η bin. To minimize statistical fluctuations from a

single ∆φ point, the lowest yield is calculated as the lowest average in a ∆φ window

of a certain width. The default ∆φ width is 0.4 radians. The ZYAM systematic error

is estimated by varying the ∆φ width from 0.2 to 0.6 radians. After subtracting the

yield in C(∆η,∆φ) by the ZYAM background, the correlated yield at its minimum
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Figure 5.10. The two-particle TPC-FTPC correlations in 0-20% nd 40-
100% central d+Au collisions. The two-particle correlation is corrected
by mixed events.

will be ‘zero’ (this is for the average over the chosen ∆φ window, not for specific

∆φ bin). In this approach, after ZYAM subtraction of the underlying event, one can

examine how the correlated yield varies over ∆φ and ∆η.

Another approach to analyze the Fourier coefficients is,

dN

d∆φ
∝ 1 +

∑

n

2Vn cos(n∆φ), (5.1)

where no background subtraction is needed. In Equation (5.1), the ∆φ-independent

combinatorial background goes into the first term “1”. A non-zero Fourier coefficient

does not necessarily mean collective anisotropic flow. Any function can be expanded

by the Fourier series. In order to infer possible physics from the Fourier coefficients

Vn, the Vn needs to be studied as a function of other observables, such as ∆η and

multiplicity. Important questions need to be asked, include why and how collective

flow, if any, develops in the small system and how low in multiplicity hydrodynamics

still apply and QGP can still form.
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5.3.1 Systematic Uncertainty

The systematic uncertainties on the correlated yields are dominated by the ZYAM

background subtraction and the 5% tracking efficiency uncertainty. They are included

in the results presented in the correlated yield distributions.

ZYAM is taken as the lowest correlation magnitude averaged over a ∆φ window

of full width 0.4. The ZYAM systematic uncertainty is estimated by changing this

ZYAM ∆φ width to 0.2 and 0.6.

The tracking efficiency is 85% for the TPC, and 75% for the FTPC. The 5%

relative uncertainty due to the tracking efficiency correction is taken from previous

publications [78,115] (estimated by variations in the TPC gas mixture, temperature,

pressure, and ionization electron drift velocity).

Systematic uncertainty in the raw correlation function is dominated by the 5%

tracking efficiency uncertainty.

5.4 Two-Particle Correlation at Mid-Rapidity

The two-particle correlation at mid-rapidity is calculated by the TPC-TPC cor-

relation, while both the trigger and the associated particles are from TPC.

5.4.1 Central and Peripheral ∆φ Correlations

The associated particle yields after the ZYAM subtraction are analyzed as a func-

tion of ∆φ for three different |∆η| regions: |∆η| < 0.3, 0.5 < |∆η| < 0.7, and

1.2 < |∆η| < 1.8. Both the trigger and the associated particles are taken from the

TPC. The FTPC centrality selection is used instead of the TPC one for the TPC-

TPC correlation in order to avoid auto-correlation from the same tracks being used

for both the correlation analysis and the centrality selection.

In Fig. 5.11, the central 0-20% collisions are represented by the red solid dots.

The peripheral 40-100% collisions data are the blue solid dots. The error bars are
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the statistical errors of the data points. The boxes are the systematic errors, which

is the quadratic sum of the systematic errors due to the efficiency and the ZYAM,

as well as the statistical error of the ZYAM, because the ZYAM statistical error is

shared by all ∆φ bins. The subtracted ZYAM background magnitudes are listed in

the figures. The numbers in the parenthesis are the errors. The first number is the

statistical error and the second two are the systematic errors. The location of the

minimum yield is indicated by the arrows.
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Figure 5.11. The TPC-TPC correlation in |∆η| < 0.3 (left panel), 0.5 <
|∆η| < 0.7 (middle panel), and 1.2 < |∆η| < 1.8 (right panel) in d+Au
collisions at

√
s
NN

= 200 GeV. The centrality is selected by the FTPC-Au
multiplicity.

Figure 5.11 left panel shows that, at |∆η| < 0.3, the near-side jet peak contributes

to the near-side yield. The near-side correlated yield is two times larger than the

away-side correlated yield for both the central and peripheral collisions. The ZYAM

value is 0.3546±0.0006 (stat.) +0.0008
−0.0013 (sys.) for the central and 0.1578±0.0005 (stat.)

+0.0009
−0.0008 (sys.) for the peripheral collisions. The ∆φ locations for the ZYAM are close

to each other for central and peripheral collisions, as the arrows indicate.

The 0.5 < |∆η| < 0.7 region is the ∆η range used in the PHENIX [104]. The

0.5 < |∆η| < 0.7 is still affected by the near-side jet peak, which can be seen from

the large near-side peak in peripheral collisions. Figure 5.11 middle panel shows that

the near-side correlated yield is slightly smaller than the away-side correlated yield
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for both the central and peripheral collisions The ZYAM values are similar to but

slightly smaller than those for |∆η| < 0.3.

The 1.2 < |∆η| < 1.8 region is considered unaffected by the near-side jet peak,

which can be seen from the zero near-side peak for peripheral collisions, while the

away-side jet is still present. The ZYAM values are smaller than the mid-rapidity

cases. The ZYAM decrease in peripheral collisions is larger than the decrease in

central collisions.

As |∆η| increases in Fig. 5.11 from the left panel to the right panel, the near-

side (∆φ ≈ 0) yield (the peak area) decreases, while the away-side yield (∆φ ≈ π)

stays almost the same for both central and peripheral collisions. However, the central

yield is larger than the peripheral one at both |∆φ| ≈ 0 and |∆φ| ≈ π for all three

|∆η| windows. Even for the large 1.2 < |∆η| < 1.8 in the right panel of Fig. 5.11,

while the peripheral data are consistent with zero, the central data show a peak on

the near side. Subtracting the peripheral correlation from the central one, i.e. the

“central−peripheral” technique, the associated particle yields will have the double

ridge structure (peaks at ∆φ = 0 and π) for all the |∆η|. One could attribute the

difference obtained from “central−peripheral” to the ridge if one assumes that the

jet correlations are the same in central and peripheral collisions and are therefore

subtracted.

5.4.2 The Near-side Jetlike ∆η Correlations

This section quantifies the near-side jetlike correlation in central and peripheral

d+Au collisions. The term “jetlike” is used instead of “jet” because other correlations

are also present, such as resonance decays. The parts of the dihadron correlations

used for the jet study are therefore referred to as “jetlike” correlations.

To compare the jetlike correlations in central and peripheral collisions, the near-

side ∆η distribution is studied, because the jetlike contribution is located within a

small ∆η angle. Figure 5.12 shows the near-side ∆η projection as the red symbols.
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The away-side yields are the blue symbols. The near side is defined as |∆φ| < π/3.

The away side is defined as |∆φ − π| < π/3. The error bars are statistical errors of

the data points, including those from the ZYAM values since they are independent

of the ∆η bins. The boxes are the systematic errors from the tracking efficiency

and ZYAM systematic errors. Both the near-side yield magnitudes and shapes are

different in the central d+Au collisions from those in the peripheral collisions. A

Gaussian+pedestal (a single constant number) function is used to fit the near-side

correlation formula: the fit results of the near side for central and peripheral data

are listed in the plots. There are three parameters in the fitting. The Gaussian

area N represents the near-side jetlike correlated yield Yjetlike per radian in ∆φ. The

Gaussian width σ represents the near-side jetlike peak width. The pedestal is C. The

fit χ2/ndf for both the central and peripheral collisions are less than 1. The near-side

jetlike peak is larger and wider in central d+Au collisions than in peripheral collisions.

A similar broadening of the jetlike peak was previously observed in d+Au collisions

compared to that in p+p collisions [94]. The away side shapes in Fig. 5.12 are weakly

dependent on ∆η, as expected from the away-side jet or the ridge.
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Figure 5.12. The near-side and away-side ∆η projection for the FTPC-
Au multiplicity selected central (left panel) and peripheral (right panel)
collisions. |∆φ| < π/3 is near side. |∆φ − π| < π/3 is away side. The
“|∆φ − ∆φmin| < π/16” represents the ZYAM value at minimal ∆φmin

average with bin width π/16.
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The “central−peripheral” ∆η distribution is shown in the left panel of Fig. 5.13.

The near side, the red dots, has a Gaussian shape, while the away side, the blue points,

is more or less constant over ∆η. The red and blue solid curves are the Gaussian fits

to the near side and the away side, respectively. The red and blue dashed curves

are the constant fits to the near side and the away side. For the near side, the

constant fit gives a χ2/ndf = 49.5/9 and the Gaussian fit gives a χ2/ndf = 1.9/7.

For the away side, the Gaussian fit χ2/ndf is 5.8/7 and the constant fit χ2/ndf is

6.4/9. The Gaussian fit gives a very large σ, effectively consistent with a constant fit.

The difference obtained from the “central−peripheral” is therefore consistent with a

Gaussian peak on the near side and a uniform distribution on the away side. These

shapes resemble jetlike features. The non-zero difference, therefore, likely arise from

jetlike origins.
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Figure 5.13. Near-side and away-side ∆η projection for
“central−peripheral” (left panel) and “central−scaled peripheral”
by Eq. (5.2) (right panel).

One way to account for the peripheral and central jet yields discrepancy is to scale

the peripheral correlation up so that the peripheral near-side jetlike yield (technically,

the Gaussian area on the near side) is the same as the central jetlike yield. Namely,

Ccentral − αCperipheral
jetlike , (5.2)
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where

α =
N central

jetlike

Nperipheral
jetlike

. (5.3)

Here Ccentral and Cperipheral are the two-particle correlations (the associated particle

yields, not the fit parameter C written in the plots) in the central and peripheral

collisions, respectively. N central
jetlike and Nperipheral

jetlike are the fit parameters N for the central

and peripheral collisions, which are the Gaussian areas representing the near-side

jetlike yields. The scaling method certainly does not make the peripheral jetlike

contribution look exactly the same as in the central d+Au collisions. This is because

their shape difference has not been taken into account. Nevertheless, the scaling

method provides a first order approximation. The scaling method with the near-side

jetlike yield ratio assumes that the away-side correlated yield scales with the near-side

yield from peripheral to central d+Au collisions, which is reasonable based on dijet

momentum conservation.

The α parameter, the ratio of the central to peripheral jetlike correlated yields,

indicates how strong the event-selection effect is on the jetlike correlated yield. The

fit results give α = 1.29 ± 0.05 (stat.) ±0.2 (sys.) for FTPC centrality 0-20% to

40-100%. Meanwhile, the ratio of the away-side correlated yields are 1.32 ± 0.02

(stat.) ±0.01 (sys.). The α parameter for the near-side jetlike yield is consistent with

the away-side yield ratio of central to peripheral collisions. This suggests that the

away-side difference between central and peripheral collisions is also mainly due to

jets.

The result of Eq. (5.2) is shown in the right panel of Fig. 5.13. The red dots

represent the near side. The blue dots represent the away side. After the subtraction

of the scaled peripheral yield to take the jet difference into account, the away-side

difference between the central and peripheral collisions is consistent with zero. As

aforementioned, the zero away-side yield difference suggests that the difference of the

away side between central and peripheral events may primarily be due to a difference

in jetlike correlations for different event selection. The near-side difference is reduced.
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The shape of the near-side difference is the result of the subtraction of a narrow

Gaussian from a wide Gaussian of equal area and an offset by a pedestal.

5.5 Event-Selection Effect on Jetlike Correlated Yield

5.5.1 Centrality Selection Methods

Besides the FTPC-Au multiplicity selection effect on the jetlike near-side cor-

related yield as discussed in Section 5.4.2, there are two other centrality selection

methods: the TPC multiplicity and the ZDC-Au neutral energy. The near side and

away side correlated yield distributions in central and peripheral collisions selected by

the TPC multiplicity are shown in the left and middle panels of Fig. 5.14, while those

selected by the ZDC energy ones are shown in left and middle panels Fig. 5.15. The

TPC multiplicity centrality selection is expected to have a larger centrality selection

effect on the jetlike correlation than the FTPC centrality one, as the right panel of

Fig. 5.14 shows. When using the TPC multiplicity for the centrality, the near-side

jetlike peak is of greater magnitude than the one using the FTPC multiplicity. The

strong TPC centrality selection effect is due to auto-correlation (the same tracks be-

ing used for both the centrality selection and the dihadron correlation study). On the

other hand, the ZDC-Au neutral energy as centrality selection has a weaker effect,

as the right panel of Fig. 5.15 shows. The weaker ZDC centrality effect is expected

from the large pseudo-rapidity (near the beam pipe), and the fact that the ZDC mea-

sures the neutral spectators which are not directly related to the charged particles

in the mid-rapidity used for the dihadron correlation study. The Gaussian and the

constant fitting results are listed in the plots for the TPC and the ZDC-Au centrality

selections, similar to Fig. 5.12.
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Figure 5.14. The near-side and the away-side ∆η projection for the TPC
multiplicity selected central (left panel) and peripheral (middle panel) col-
lisions. The “central−peripheral” difference (right panel) shows a strong
jetlike correlation feature.
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Figure 5.15. The near-side and the away-side ∆η projection for the ZDC-
Au energy selected central (left panel) and peripheral (middle panel) colli-
sions. The “central−peripheral” (right panel) method shows weak jetlike
feature.

5.5.2 Multiplicity Dependence

To further investigate the influence of event selection on jetlike correlations, Fig. 5.16

shows Yjetlike as a function of the event activity (centrality), represented by the mid-

rapidity raw (efficiency uncorrected) charged hadron dN/dη, in events selected ac-

cording to the FTPC-Au multiplicity (solid squares) and the ZDC-Au neutral energy

(open squares), respectively. The systematic uncertainties are obtained by Gaus-

sian fits to the ∆η correlations varied by the ZYAM systematic uncertainties. The

MB events are divided into five centrality classes as listed in Table 5.3. Figure 5.16
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shows that the near-side jetlike correlated yield continues to increase with increasing

event multiplicity. ALICE also reports a jetlike correlation increase with multiplicity

in p+Pb collisions at
√
s
NN

= 5.02 TeV [116]. The comparison with the HIJING

Table 5.3
The centrality class cuts for the FTPC multiplicity and the ZDC attend-
uated ADC signal.

Centrality 0-10% 10-20% 20-40% 40-60% 60-100%

FTPC-Au multiplicity [22,500] [17,21] [10,16] [6,9] [0,5]

ZDC-Au ADC [133,500] [129,132] [117,128] [100,116] [0,99]

model [117] is illustrated by the curve in Fig. 5.16. HIJING is a Monte Carlo pro-

gram to study jet and associated particle production in high energy collisions based

on QCD inspired model for multiple jets production [117]. HIJING shows no increase

of jetlike yield with the multiplicity increase. The HIJING calculations are scaled

down for all centrality bins by the same factor such that the lowest multiplicity bin

matches real data.

5.5.3 pT Dependence

The jetlike ratio α parameter can quantify the effect of event selection on jetlike

correlations. Figure 5.17 shows the pT dependence of the α parameter. The systematic

uncertainties are given by ZYAM uncertainties as in Fig. 5.16. Two sets of data points

are shown. One shows the α parameter as a function of the associated particle p
(a)
T

with the trigger pT fixed in 0.5 < p
(t)
T < 1 GeV/c . This trigger pT range is similar to

the 0.5 < p
(t)
T < 0.75 GeV/c used by PHENIX [104]. The α parameter is larger than

unity and relatively insensitive to p
(a)
T for this particular p

(t)
T choice. The other set of

points show α as a function of p
(t)
T with 0.5 < p

(a)
T < 1 GeV/c fixed. The α parameter

seems to decrease with p
(t)
T .
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Figure 5.16. The near-side jetlike correlated yield, obtained from a Gaus-
sian+pedestal fit to ∆η distribution, as a function of the uncorrected
mid-rapidity dN/dη measured in the TPC. Two event selections are used:
the FTPC-Au multiplicity (filled squares) and the ZDC-Au energy (open
squares). The curve is the result of a HIJING calculation. Error bars are
statistical and caps show the systematic uncertainties.

5.5.4 Discussion

There could be multiple reasons for the event-selection effect on jetlike correla-

tions. One is a simple selection bias due to self-correlation for the centrality defi-

nition using TPC multiplicity. Such a bias may also be present for the centrality

definition using FTPC-Au multiplicity: because the away-side jet can contribute to

the FTPC-Au multiplicity. A high FTPC-Au multiplicity could preferentially select

larger multiplicity jets (either of larger energy or happening to fragment into more

particles). However, such a bias is not observed in the HIJING model implementa-

tion. Possibly because dijet production in HIJING resulting in hadrons in studied pT

range of 1 < pT < 3 GeV/c may be negligible at the FTPC pseudo-rapidity region.
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Figure 5.17. The ratio of the correlated yields in high to low FTPC-Au
multiplicity events as a function of p

(a)
T (p

(t)
T ) where p

(t)
T (p

(a)
T ) is fixed.

Error bars are statistical and the caps show the systematic uncertainties.

Centrality selection bias is unlikely present in events selected by the ZDC energy.

Event centrality dependent sampling of jet energies could also be caused by physics

rather than selection biases; for example, there could be positive correlations between

jet production and the underlying event. There could also be a genuine dependence

of jetlike correlations on event activity, such as initial-state kT effects due to ini-

tial state multiple scattering or even final-state jet modifications by possible medium

formation [98,99] in the small d+Au collision system.

5.5.5 Low-Multiplicity Data Subtraction

The open circles in Fig. 5.18 represent the difference between central and periph-

eral events, with the latter first multiplied by the α parameter from the fit. The

scaling is essentially a first order correction to the multiplicity selection effect on
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jetlike correlations. Indeed, the away-side yields are approximately zero for all |∆η|
ranges shown in Fig. 5.18. The vanishing away-side difference suggests that the dif-

ference in the away-side long-range correlations between central and peripheral events

is mostly from jetlike correlations.
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Figure 5.18. Dihadron ∆φ correlation difference between high- and low-
multiplicity collisions in (a) 0 < |∆η| < 0.3, (b) 0.5 < |∆η| < 0.7 and
(c) 1.2 < |∆η| < 1.8 in d+Au collisions at

√
sNN = 200 GeV for charged

particles of 1 < pT < 3 GeV/c. Both the trigger and associated parti-
cles are from the TPC. FTPC-Au multiplicity is used for event selection.
The solid dots represent “central−peripheral.”. The open circles repre-
sent “central−α×peripheral.”, where α is near-side Gaussian area ratio in
central to peripheral collisions. The error bars are statistical errors.

The solid dots in Fig. 5.18 show the simple difference between central and periph-

eral data, is similar to the measurement by PHENIX [104]. The peak magnitudes on

the near-side and away-side turn out to be similar, resembling a double ridge. As the

large acceptance STAR data show, the resulting double-ridge structure may well be

due to residual jetlike correlations which remain after the simple subtraction of the

peripheral data from the central data.

5.6 Two-Particle ∆φ Correlation at Forward Rapidities

The FTPCs cover 2.8 < |η| < 3.8 acceptance on each side. Studying the two-

particle correlations with the trigger particle in the TPC and the associated particle
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in the FTPC will allow access to the large |∆η| region, where the near-side jet con-

tribution should be minimal. Figure 5.19 shows such correlations.
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Figure 5.19. Two-particle TPC-FTPC correlated yield ∆φ distributions
at −4.5 < ∆η < −2 (left panel) and 2 < ∆η < 4.5 (right panel).

As Fig. 5.19 shows, on the away side, for the Au-going side, the central data (red

points) are larger than the peripheral data (blue points); for the d-going side, it is the

opposite behavior. The difference in behaviors of the Au-going and the d-going sides

may be related to the difference in underlying parton distribution because different x

ranges are probed by the Au-going or the d-going side correlations. On the near side,

for the Au-going side, the central yield has an excess over the peripheral yield (the

later is consistent with zero); for the d-going side, the central and peripheral yields

are both consistent with zero.

5.7 Near-Side Long-Range Ridge ∆η Dependence

To further understand the near-side ridge, the near-side and away-side correlated

yields in central d+Au collisions are plotted as a function of ∆η with both the TPC-

TPC and the TPC-FTPC correlations on the same graph in Fig. 5.20. To avoid

self-correlations, the ZDC-Au centrality selection is used for both correlations. For

comparison, the ZYAM magnitude is also plotted. The points at ∆η < −2 and the
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Figure 5.20. The ∆η dependence of the near-side and away-side correlated
yields and the estimated ZYAM background (scaled by 1/20).

Figure 5.21. Left panel: the ∆η dependence the ratio of the near-side to
away-side correlated yields. The solid line is a linear fit to the ratio in
central d+Au collisions, yielding a slope of (−2.2 ± 1.8) × 10−2. Right
panel: the ∆η dependences the ratio of the near-side correlated yield to
the ZYAM values. The solid line is a linear fit to the ratio in central d+Au
collisions, yielding a slope of (4± 1)× 10−3.
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points at ∆η > 2 are from the TPC-FTPC correlations. The others are from the

TPC-TPC correlations. The near-side yields are the pink circles. The away-side

yields are the blue triangles. The ZYAM values are represented by the red lines.

There is a step at |∆η| = 2 between the two sets of correlation data. This step is due

to the fact that the particle pairs with ∆η to the left of the step and those which ∆η

to the right come from different kinematic regions (TPC particles have −1 < η < 1

and FTPC particles have −3.8 < η < −2.8 or 2.8 < η < 3.8) even though their ∆η

gaps are similar at the step.

To possibly elucidate the formation mechanism of the ridge, the ratio of the near-

side to the away-side correlated yields is studied in left panel of Fig. 5.21. The solid

dots are the central data. The open circles are the peripheral data. While the large

peak at ∆η ≈ 0 is due to the near-side jet, the ratio is rather uniform in ∆η at |∆η| >
1. A linear fit to the ∆η < −1 region gives a slope of (−2.2± 1.8)× 10−2. The linear

fit indicates that the ratio is consistent with a constant within one standard deviation.

Since the away-side correlated yields are dominated by jets, the ∆η-independent ratio

may suggest a connection between the near-side ridge and dijet production, even

though any possible jet contribution to the ridge at |∆η| > 1 should be minimal.

On the other hand, the near-side ridge does not seem to scale with the ZYAM

magnitude. A linear fit to the ratio of the near-side correlated yield over ZYAM

indicates a slope of (4 ± 1) × 10−3 in ∆η which differs from zero by four standard

deviations, as the right panel of Fig. 5.21 shows.

5.8 Fourier Coefficients

The above correlated yields are subject to ZYAM background subtraction. An-

other way to study the correlations is to use Fourier series, which can characterize all

azimuthal functions. The Fourier coefficients are calculated by

Vn(∆η) = 〈cos(n∆φ)〉 =
∫ 2π

0
C(∆η,∆φ) cos(n∆φ)d∆φ
∫ 2π

0
C(∆η,∆φ)d∆φ

. (5.4)
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C(∆η,∆φ) is the correlation function, see Eq. (1.6) in Section 5.3. Vn is the average

of the cos(n∆η) over the trigger-associated pairs in the selected ∆η window for all

events.

5.8.1 Systematic Uncertainty

Systematic uncertainties in the Fourier coefficients in Fig. 5.25 are estimated to be

5% for V1 and 10% for V2, while V3 is consistent with zero within 2σ. It is estimated

by varying the dca from the default 3 cm to 2 cm, and varying number of hit points

from the default 25 points to 20 points (see Figures 5.22 through 5.24).

Figure 5.22. Systematic error estimation (relative error
V1−V default

1

V default
1

) for

Fourier coefficient V1 by changing track cuts for TPC-TPC (1.2 < |∆η| <
1.8), TPC-FTPC Au-side (−4.5 < ∆η < −2), and TPC-FTPC d-side
(2 < ∆η < 4.5) correlations with FTPC Au-side multiplicity event selec-
tion.

5.8.2 Results

The left panel of Figure 5.25 shows the Fourier coefficient V1, the middle panel

shows the V2 and the right panel shows the V3. V3 is mostly consistent with zero.

Three ∆η ranges for the correlations are shown: the TPC-FTPC Au-side, the TPC-

TPC, and the TPC-FTPC d-side correlations. Results from all three centrality defi-
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Figure 5.23. Systematic error estimation (relative error
V2−V default

2

V default
2

) for

Fourier coefficient V2 by changing track cuts for TPC-TPC (1.2 < |∆η| <
1.8), TPC-FTPC Au-side (−4.5 < ∆η < −2), and TPC-FTPC d-side
(2 < ∆η < 4.5) correlations with FTPC Au-side multiplicity event selec-
tion.

Figure 5.24. Systematic error estimation (absolute error V3 − V default
3 )

for Fourier coefficient V3 by changing track cuts for TPC-TPC 1.2 <
|∆η| < 1.8, TPC-FTPC Au-side −4.5 < ∆η < −2, and TPC-FTPC
d-side 2 < ∆η < 4.5 with FTPC Au-side multiplicity event selection.

nitions are shown, plotted at the corresponding measured mid-rapidity charged par-

ticle dN/dη. V2 is finite at all measured ∆η, and is larger at mid-rapidity than

at forward/backward rapidities; V2 from the TPC-FTPC d-side correlation may be

even larger than that from the TPC-FTPC Au-side correlation. As shown in the

left panel of Fig. 5.25, V1 varies approximately as (dN/dη)−1, and from the mid-

dle panel of Fig. 5.25, V2 is approximately independent of dN/dη. As a result, the
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“central−peripheral” correlated yield (essentially products of multiplicity and Vn)

could be dominated by a V2 component, with a magnitude similar to those for the

individual peripheral and central data. There appears to be a symmetric back-to-

back double ridge at large ∆η in “central−peripheral” correlations. After accounting

for multiplicity biases, the “central−scaled-peripheral” correlated yield is essentially

eliminated on the away side, as shown by the open symbols in Fig. 5.18.

Figure 5.25. Fourier coefficients V1 (left panel), V2 (middle panel) and V3

(right panel) versus the measured mid-rapidity charged particle density
dN/dη.

Figure 5.26 shows the second harmonic Fourier coefficient Vn as a function of ∆η

for both central and peripheral collisions. The near-side jet peak at ∆η = 0 is clearly

seen in all Vn. V2 continues to decrease with increasing |∆η| from the small |∆η| jet
region to the large |∆η| ridge region. The V2 values are similar between central and

peripheral d+Au collisions. A V2 from the jet correlation decreases as |∆η| increases.
However, if V2 at large ∆η is of a hydrodynamic collective flow origin, the decreasing

trend with ∆η is not unreasonable. However, the similar magnitudes in central and

peripheral collisions seem surprising in the hydrodynamic collective flow picture.

5.9 Summary

Dihadron correlations are measured at mid-rapidity and forward/backward rapidi-

ties using the STAR TPC and FTPC as a function of centrality, i.e. event activity,

in d+Au collisions at
√
s
NN

= 200 GeV. The centrality is classified by three measure-
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Figure 5.26. Fourier coefficient V1 (left panel), V2 (middle panel) and V3

(right panel) versus ∆η.

ments: the mid-rapidity TPC charged particle multiplicity, the FTPC-Au forward

charged particle multiplicity, and the ZDC-Au zero-degree neutral energy.

The correlated yields are extracted by subtracting the estimated ∆φ-independent

combinatorial background using the ZYAM method. It is found that the correlated

yield is larger in central than peripheral collisions, and that the ∆η-dependence of the

observed yield difference resembles jetlike features, suggesting a jetlike origin. There

could be multiple reasons for this difference, ranging from simple auto-correlation

biases to physical differences between central and peripheral d+Au collisions. Af-

ter scaling the peripheral data by the ratio of the near-side jetlike correlated yields,

the away-side correlation difference is significantly diminished. This analysis demon-

strates that the long-range dihadron correlation difference between central and pe-

ripheral events at RHIC may primarily be due to jets. Such event-selection effects

on jetlike correlations must be addressed before investigating possible non-jet corre-

lations, such as anisotropic flow, in d+Au collisions at RHIC.

Finite near-side correlated yields are present above the estimated ZYAM back-

ground in central d+Au collisions at large ∆η between particle pairs both from the

TPC as well as from the TPC and the Au-beam direction FTPC. The near-side

ridge at |∆η| > 1 appears to scale with the away-side correlated yield, which is be-
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lieved that the away-side yield is dominated by jet contributions in d+Au collisions

at
√
s
NN

= 200 GeV. The near-side ridge does not scale with the estimated ZYAM

background.

Fourier coefficients of the raw dihadron correlations are also reported. All ∆φ

correlation functions appear to have a V1 and a V2 Fourier component. The V1 is

found to be approximately inversely proportional to event multiplicity. The V2 is

found to decrease with ∆η, but remains finite at both forward and backward rapidities

of |∆η| ≈ 3 with similar magnitudes. The V2 is found approximately independent

of the event multiplicity. Extreme caution should be taken when interpreting the V2

result in peripheral collisions as being from jets and in central d+Au collisions as

primarily being from non-jet, elliptic flow physics.
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6. Conclusion

Three distinct but intellectually connected measurements are reported in this thesis.

The first regards triangular harmonic flow in heavy-ion collisions, which is considered

to be the primary source for the novel near-side ridge and away-side double-peak

measurements in two-particle correlations. The second regards isolation of flow and

nonflow effects in two-particle correlations, which is critical in extracting QGP prop-

erties, such as the shear viscosity to entropy density ratio η/s. The third regards

long-range ridge correlations in d+Au collisions, which have important implications

to possible QGP formation in small systems.

The ridge is a small azimuthal opening-angle correlation but long-range in pseudo-

rapidity. The double-peak correlation refers to two peaks in the jet recoil direction in

azimuth. Both were observed in heavy ion collisions after the subtraction of elliptic

flow background, and can be quantified by triangular flow v3. The ∆η-gap, centrality

and pT dependence of v3 is measured in Au+Au collisions at
√
sNN = 200 GeV. The

hydrodynamic calculation with a lumpy initial condition describes well the measured

v3 below pT < 2 GeV/c. The measurement helps constrain the η/s parameter in

hydrodynamic model calculations.

The isolation of flow (a global correlation) and nonflow (few-body correlations)

exploits the measurements of two- and four-particle azimuthal cumulants in symmet-

ric Au+Au collisions. A data-driven method is applied to separate the ∆η-dependent

and ∆η-independent azimuthal correlations. The ∆η-independent correlation is dom-

inated by flow and flow fluctuations. It is found to be constant over η in the measured

range |η| < 1. The relative flow fluctuation is found be to 34%±2%(stat.)±3%(sys.)

in 20-30% central Au+Au collisions at
√
sNN = 200 GeV. The ∆η-dependent correla-

tion may be attributed to nonflow. It is found to be 5%±2% relative to the square of

the average flow for those same collisions with |∆η| > 0.7 and 0.15 < pT < 2 GeV/c.
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While Au+Au collisions have large collective flow, angular correlations in d+Au

collisions are dominated by jet production at modest pT . It is found that the jetlike

correlations depend on the collision activity, in contrast to initial expectations. To

account for the dependence, a scaling factor is applied to the low-activity data to be

subtracted from the high-activity data. The remaining nonjet correlation is minimal

on the away side. On the near side, a finite correlated yield is observed to extend

to large pseudo-rapidity distances in high-activity collisions. This so-called near-side

ridge appears to scale with the away-side jet as a function of ∆η. A Fourier analysis of

the measured azimuthal correlations indicates a V2, independent of collision activity,

with similar magnitudes between Au- and d-going directions. These measurements

help constrain theoretical models for the ridge in d+Au collisions.



APPENDIX



93

A. Kinematic Variables

When dealing with relativistic heavy-ion collisions, several kinematic variables are

used such that they have simple forms under the Lorentz transformation. The natural

units are used, c = h̄ = 1, where c is the speed of light and h̄ is the Planck constant.

The contravariant vector of a particle with momentum ~p and energy E is

pµ = (E, ~p) = (E, ~pT , pz) = (E, px, py, pz), (A.1)

where z is the beam direction and x-y is the transverse plane. The transverse mo-

mentum magnitude is pT = | ~pT | =
√

p2x + p2y, and the azimuthal angle φ spans from

the x-axis to the ~pT vector.

The rapidity of a particle is defined as

y =
1

2
ln
E + pz
E − pz

. (A.2)

Rapidity is a dimensionless variable. The advantage of using rapidity is that its

Lorentz transformation has an additive form. For example, a particle has rapidity

y in one frame, and rapidity y′ in another frame moving at a velocity β in the z-

direction relative to the first. The Lorentz transformation of the particle rapidity is

simply given by

y′ = y − yβ (A.3)

where

yβ =
1

2
ln
1 + β

1− β
. (A.4)

Following relations relate rapidity y and other kinematic variables:

E = mT cosh y, (A.5)

pz = mT sinh y. (A.6)
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where transverse mass mT =
√

m2 + p2T .

Despite the convenience of rapidity, the particle mass (particle species) is not easy

to measure in experiments. The pseudo-rapidity η is often used as a substitute for y.

The η is given by the particle momentum polar angle θ relative to the beam axis:

η = −ln tan
θ

2
=

1

2
ln
|~p|+ pz
|~p| − pz

. (A.7)

For massless particles, η = y. For mid-rapidity particles, βz ≪ 1: η ≈ y. Similarly

the following relations are useful:

|~p| = pT cosh η, (A.8)

pz = pT sinh η. (A.9)
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